Catechol-induced covalent modifications modulate the aggregation tendency of α-synuclein: An in-solution and in-silico study.

DOPAC‐induced covalent modification amyloid inhibition catechol molecular dynamics simulation native‐mass spectrometry α‐Synuclein

Journal

BioFactors (Oxford, England)
ISSN: 1872-8081
Titre abrégé: Biofactors
Pays: Netherlands
ID NLM: 8807441

Informations de publication

Date de publication:
27 May 2024
Historique:
received: 15 03 2024
accepted: 14 05 2024
medline: 27 5 2024
pubmed: 27 5 2024
entrez: 27 5 2024
Statut: aheadofprint

Résumé

Parkinson's disease (PD) stands as a challenging neurodegenerative condition characterized by the emergence of Lewy Bodies (LBs), intracellular inclusions within dopaminergic neurons. These LBs harbor various proteins, prominently including α-Synuclein (Syn) aggregates, implicated in disease pathology. A promising avenue in PD treatment involves targeting Syn aggregation. Recent findings from our research have shown that 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET) possess the ability to impede the formation of Syn fibrils by disrupting the aggregation process. Notably, these compounds primarily engage in noncovalent interactions with the protein, leading to the formation of off-pathway oligomers that deter fibril growth. Through proteolysis studies and mass spectrometry (MS) analysis, we have identified potential covalent modifications of Syn in the presence of DOPAC, although the exact site remains elusive. Employing molecular dynamics simulations, we delved into how DOPAC-induced covalent alterations might affect the mechanism of Syn aggregation. Our findings indicate that the addition of a covalent adduct on certain residues enhances fibril flexibility without compromising its secondary structure stability. Furthermore, in the monomeric state, the modified residue fosters novel bonding interactions, thereby influencing long-range interactions between the N- and C-termini of the protein.

Identifiants

pubmed: 38801346
doi: 10.1002/biof.2086
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Progetti di Ateneo 2022 BIRD222840
ID : C93C22008380001
Organisme : PRIN 2022TWRXAW
ID : 2022TWRXAW

Informations de copyright

© 2024 International Union of Biochemistry and Molecular Biology.

Références

Burré J. The synaptic function of α‐synuclein. J Parkinsons Dis. 2015;5:699–713.
Spillantini MG, Schmidt ML, Lee VM‐Y, Trojanowski JQ, Jakes R, Goedert M. α‐Synuclein in Lewy bodies. Nature. 1997;388:839–840.
Trojanowski JQ, Lee VM. Parkinson's disease and related α‐Synucleinopathies are brain Amyloidoses. Ann N Y Acad Sci. 2003;991:107–110.
Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. N Engl J Med. 1988;318:876–880.
Lotharius J, Brundin P. Pathogenesis of parkinson's disease: dopamine, vesicles and α‐synuclein. Nat Rev Neurosci. 2002;3:932–942.
Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282–11286.
Emamzadeh F. Alpha‐synuclein structure, functions, and interactions. J Res Med Sci. 2016;21:29.
Bertoncini CW, Jung Y‐S, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, et al. Release of long‐range tertiary interactions potentiates aggregation of natively unstructured α‐synuclein. Proc Natl Acad Sci U S A. 2005;102:1430–1435.
Stephens AD, Zacharopoulou M, Moons R, Fusco G, Seetaloo N, Chiki A, et al. Extent of N‐terminus exposure of monomeric alpha‐synuclein determines its aggregation propensity. Nat Commun. 2020;11:2820.
Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of α‐synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998;273:9443–9449.
Eliezer D, Kutluay E, Bussell R, Browne G. Conformational properties of α‐synuclein in its free and lipid‐associated states. J Mol Biol. 2001;307:1061–1073.
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α‐synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14:38–48.
Alam P, Bousset L, Melki R, Otzen DE. α‐Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem. 2019;150:522–534.
Palazzi L, Bruzzone E, Bisello G, Leri M, Stefani M, Bucciantini M, et al. Oleuropein aglycone stabilizes the monomeric α‐synuclein and favours the growth of non‐toxic aggregates. Sci Rep. 2018;8:8337.
Palazzi L, Leri M, Cesaro S, Stefani M, Bucciantini M, Polverino de Laureto P. Insight into the molecular mechanism underlying the inhibition of α‐synuclein aggregation by hydroxytyrosol. Biochem Pharmacol. 2020;173:113722.
Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, et al. Structural features and toxicity of α‐synuclein oligomers grown in the presence of DOPAC. Int J Mol Sci. 2021;22:6008.
Fongaro B, Cappelletto E, Sosic A, Spolaore B, Polverino de Laureto P. 3,4‐Dihydroxyphenylethanol and 3,4‐dihydroxyphenylacetic acid affect the aggregation process of E46K variant of α‐synuclein at different extent: insights into the interplay between protein dynamics and catechol effect. Protein Sci. 2022;31:e4356. https://doi.org/10.1002/pro.4356
Zhang S, Wang R, Wang G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Nerosci. 2019;10:945–953.
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39:31–59.
Zhou W, Gallagher A, Hong D‐P, Long C, Fink AL, Uversky VN. At low concentrations, 3,4‐Dihydroxyphenylacetic acid (DOPAC) binds non‐covalently to α‐synuclein and prevents its fibrillation. J Mol Biol. 2009;388:597–610.
Dedmon MM, Lindorff‐Larsen K, Christodoulou J, Vendruscolo M, Dobson CM. Mapping Long‐range interactions in α‐synuclein using spin‐label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 2005;127:476–477.
Chen S‐H, Li C‐W. Detection and characterization of catechol quinone‐derived protein adducts using biomolecular mass spectrometry. Front Chem. 2019;7:571. https://doi.org/10.3389/fchem.2019.00571
Plotegher N, Bubacco L. Lysines, Achilles' heel in alpha‐synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev. 2016;26:62–71.
Follmer C, Coelho‐Cerqueira E, Yatabe‐Franco DY, Araujo GDT, Pinheiro AS, Domont GB, et al. Oligomerization and membrane‐binding properties of covalent adducts formed by the interaction of α‐synuclein with the toxic dopamine metabolite 3,4‐Dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem. 2015;290:27660–27679.
Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, et al. Biophysical properties of the synucleins and their propensities to fibrillate. J Biol Chem. 2002;277:11970–11978.
De Franceschi G, Frare E, Bubacco L, Mammi S, Fontana A, de Laureto PP. Molecular insights into the interaction between α‐synuclein and docosahexaenoic acid. J Mol Biol. 2009;394:94–107.
Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, et al. Solid‐state NMR structure of a pathogenic fibril of full‐length human α‐synuclein. Nat Struct Mol Biol. 2016;23:409–415.
Bekker H, Berendsen HJC, Van Der Spoel D. Gromacs: a parallel computer for molecular dynamics simulations. Paper presented at 4th International Conference on Computational Physics (PC 92). World Scientific Publishing, Singapore, 1993. p. 252–256.
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–73.
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM‐GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. 2016;12:405–413.
Jo S, Cheng X, Lee J, Kim S, Park S, Patel DS, et al. CHARMM‐GUI 10 years for biomolecular modeling and simulation. J Comput Chem. 2017;38:1114–1124.
Vanommeslaeghe K, MacKerell AD. Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model. 2012;52:3144–3154.
Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re‐optimization of parameters. J Mol Model. 2013;19:1–32.
Clementel D, Del Conte A, Monzon AM, Camagni GF, Minervini G, Piovesan D, et al. RING 3.0: fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res. 2022;50:W651–W656.
van den Heuvel RH, Heck AJ. Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol. 2004;8:519–526.
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6.
Doig AJ, Derreumaux P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol. 2015;30:50–56.
Goedert M, Jakes R, Spillantini MG. The Synucleinopathies: twenty years on. J Parkinsons Dis. 2017;7:S51–S69.
Dettmer U, Newman AJ, von Saucken VE, Bartels T, Selkoe D. KTKEGV repeat motifs are key mediators of normal α‐synuclein tetramerization: their mutation causes excess monomers and neurotoxicity. Proc Natl Acad Sci. 2015;112:9596–9601.
Ulamec SM, Maya‐Martinez R, Byrd EJ, Dewison KM, Xu Y, Willis LF, et al. Single residue modulators of amyloid formation in the N‐terminal P1‐region of α‐synuclein. Nat Commun. 2022;13:4986.
Xu L, Nussinov R, Ma B. Coupling of the non‐amyloid‐component (NAC) domain and the KTK(E/Q)GV repeats stabilize the α‐synuclein fibrils. Eur J Med Chem. 2016;121:841–850.

Auteurs

Ilenia Inciardi (I)

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.

Elena Rizzotto (E)

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.

Francesco Gregoris (F)

Department of Biomedical Sciences, University of Padova, Padova, Italy.

Benedetta Fongaro (B)

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.

Alice Sosic (A)

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.

Giovanni Minervini (G)

Department of Biomedical Sciences, University of Padova, Padova, Italy.

Patrizia Polverino de Laureto (P)

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.

Classifications MeSH