Treatment of patients with carcinomas in advanced stages with 5-fluorouracil, folinic acid and pyridoxine in tandem.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 May 2024
27 May 2024
Historique:
received:
18
12
2023
accepted:
22
05
2024
medline:
28
5
2024
pubmed:
28
5
2024
entrez:
27
5
2024
Statut:
epublish
Résumé
The effect of high-dose pyridoxine (PN) on activity of 5-fluorouracil (FUra) and folinic acid (FA)-containing regimens was studied in 50 patients including 14 with digestive tract, and 36 with breast carcinomas (BC) in advanced stages with poor prognostic characteristics. Patients with colorectal, and pancreas adenocarcinoma received oxaliplatin, irinotecan, FUra, FA (Folfirinox), and patients with squamous cell carcinoma of the esophagus had paclitaxel, carboplatin, FUra, FA (TCbF). Patients with BC received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) followed by TCbF or TCbF only, and patients who overexpressed HER2 received TCbF plus trastuzumab and pertuzumab. PN (1000-3000 mg/day iv) preceded each administration of FUra and FA. 47 patients (94%) responded, including 16 (32%) with CR. Median tumor reduction was 93%. Median event-free survival (EFS) was 37.7 months. The 25 patients with tumor shrinkage ≥ 91% had EFS of 52% from 42 months onwards. Unexpected toxicity did not occur. PN enhances potency of chemotherapy regimens comprising FUra and FA.
Identifiants
pubmed: 38802419
doi: 10.1038/s41598-024-62860-z
pii: 10.1038/s41598-024-62860-z
doi:
Substances chimiques
Fluorouracil
U3P01618RT
Leucovorin
Q573I9DVLP
Pyridoxine
KV2JZ1BI6Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12054Informations de copyright
© 2024. The Author(s).
Références
Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330–338 (2003).
pubmed: 12724731
doi: 10.1038/nrc1074
Wyatt, M. D. & Wilson, D. M. I. I. I. Participation of DNA repair in the response to 5-fluorouracil. Cell Mol. Life Sci. 66, 788–799 (2009).
pubmed: 18979208
doi: 10.1007/s00018-008-8557-5
Mani, C., Pai, S., Papke, C. M., Palle, K. & Gmeiner, W. H. Thymineless death by the fluoropyrimidine polymer F10 involves replication fork collapse and is enhanced by Chk1 inhibition. Neoplasia 20, 1236–1245 (2018).
pubmed: 30439567
pmcid: 6232621
doi: 10.1016/j.neo.2018.10.006
Cortez, D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 32, 49–157 (2015).
doi: 10.1016/j.dnarep.2015.04.026
Li, L. S. et al. DNA mismatch repair (MMR)-dependent 5-fluorouracil cytotoxicity and the potential for new therapeutic targets. Br. J. Pharmacol. 158, 679–692 (2009).
pubmed: 19775280
pmcid: 2765589
doi: 10.1111/j.1476-5381.2009.00423.x
Santi, D. V., McHenry, C. S. & Sommer, H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 13, 471–481 (1974).
pubmed: 4203910
doi: 10.1021/bi00700a012
Danenberg, P. V. & Danenberg, K. D. Effect of 5,10-methylenetetrahydrofolate on the dissociation of 5-Fluoro-2’-deoxyuridylate from thymidylate synthetase: evidence for an ordered mechanism. Biochemistry 17, 4018–4024 (1978).
pubmed: 101234
doi: 10.1021/bi00612a022
Lockshin, A. & Danenberg, P. V. Biochemical factors affecting the tightness of fluorodeoxyuridylate binding to human thymidylate synthetase. Biochem. Pharmacol. 30, 247–257 (1981).
pubmed: 6939434
doi: 10.1016/0006-2952(81)90085-X
Ullman, B., Lee, M., Martin, D. W. & Santi, D. V. Cytotoxicity of 5-fluoro-2’-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate. Proc. Natl. Acad. Sci. USA 75, 980–983 (1978).
pubmed: 147465
pmcid: 411383
doi: 10.1073/pnas.75.2.980
Machover, D. et al. Treatment of advanced colorectal and gastric adenocarcinomas with 5-FU combined with high-dose folinic acid: a pilot study. Cancer Treat. Rep. 66, 1803–1807 (1982).
pubmed: 6982099
Machover, D. et al. Treatment of advanced colorectal and gastric adenocarcinomas with 5-fluorouracil and high-dose folinic acid. J. Clin. Oncol. 4, 685–696 (1986).
pubmed: 3517242
doi: 10.1200/JCO.1986.4.5.685
Piedbois, P. et al. Modulation of 5-fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. J. Clin. Oncol. 10, 896–903 (1992).
doi: 10.1200/JCO.1992.10.6.896
Machover, D. et al. Enhancement of 5-fluorouracil cytotoxicity by pyridoxal 5′-phosphate and folinic acid in tandem. J. Pharmacol. Exp. Ther. 366, 238–243 (2018).
pubmed: 29858389
doi: 10.1124/jpet.118.249367
Romanini, A. et al. Role of folylpolyglutamates in biochemical modulation of fluoropyrimidines by leucovorin. Cancer Res. 51, 789–793 (1991).
pubmed: 1988119
Wright, J. E. et al. Selective expansion of 5,10-Methylenetetrahydrofolate pools and modulation of 5-fluorouracil antitumor activity by leucovorin in vivo. Cancer Res. 49, 2592–2596 (1989).
pubmed: 2785434
Houghton, J. A. et al. Influence of dose of [6RS]Leucovorin on reduced folate pools and 5-fluorouracil-mediated thymidylate synthase inhibition in human colon adenocarcinoma xenografts. Cancer Res. 50, 3940–3946 (1990).
pubmed: 2354443
Houghton, J. A. et al. Relationship between dose rate of [6RS]Leucovorin administration, plasma concentrations of reduced folates, and pools of 5,10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts. Cancer Res. 50, 3493–3502 (1990).
pubmed: 2140289
Zhang, Z. G. & Rustum, Y. M. Effect of diastereoisomers of 5-formyltetrahydrofolate on cellular growth, sensitivity to 5-fluoro-2’-deoxyuridine, and methylenetetrahydrofolate polyglutamate levels in HCT-8 cells. Cancer Res. 51, 3476–3481 (1991).
pubmed: 2054787
Boarman, D. M. & Allegra, C. J. Intracellular metabolism of 5-formyl tetrahydrofolate in human breast and colon cell lines. Cancer Res. 52, 36–44 (1992).
pubmed: 1370075
Priest, D. G., Schmitz, J. C. & Bunni, M. A. Folate metabolites as modulators of antitumor drug activity. In Chemistry and Biology of Pteridines and Folates (ed. Ayling, J. E.) 693–697 (Plenum Press, New York, 1993).
Voeller, D. M. & Allegra, C. J. Intracellular metabolism of 5-methyltetrahydrofolate and 5-formyltetrahydrofolate in a human breast cancer cell line. Cancer. Chemother. Pharmacol. 34, 491–496 (1994).
pubmed: 7522978
doi: 10.1007/BF00685660
Machover, D. et al. Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem. Pharmacol. 61, 867–876 (2001).
pubmed: 11274973
doi: 10.1016/S0006-2952(01)00560-3
Wettergren, Y., Taflin, H., Odin, E., Kodeda, K. & Derwinger, K. A pharmacokinetic and pharmacodynamic investigation of Modufolin compared to Isovorin after single dose intravenous administration to patients with colon cancer: a randomized study. Cancer Chemother. Pharmacol. 75, 37–47 (2015).
pubmed: 25342290
doi: 10.1007/s00280-014-2611-9
Nixon, P. F., Slutsky, G., Nahas, A. & Bertino, J. R. The turnover of folate coenzymes in murine lymphoma cells. J. Biol. Chem. 248, 5932–5936 (1973).
pubmed: 4199256
doi: 10.1016/S0021-9258(19)43490-X
Kutzbach, C. & Stokstad, E. L. R. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim. Biophys. Acta. 250, 459–477 (1971).
pubmed: 4399897
doi: 10.1016/0005-2744(71)90247-6
Krebs, H. A., Hems, R. & Tyler, B. The Regulation of folate and methionine metabolism. Biochem. J. 158, 341–353 (1976).
pubmed: 985432
pmcid: 1163976
doi: 10.1042/bj1580341
Burgos-Barragan, G. et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 548, 549–554 (2017).
pubmed: 28813411
pmcid: 5714256
doi: 10.1038/nature23481
Girgis, S., Suh, J. R., Jolivet, J. & Stover, P. J. 5-Formyltetrahydrofolate regulates homocysteine remethylation in human neuroblastoma. J. Biol. Chem. 272, 4729–4734 (1997).
pubmed: 9030524
doi: 10.1074/jbc.272.8.4729
Schirch, L. V. et al. Serine transhydroxymethylase. Subunit structure and the involvement of sulfhydryl groups in the activity of the enzyme. J. Biol. Chem. 248, 6456–6461 (1973).
pubmed: 4738233
doi: 10.1016/S0021-9258(19)43467-4
Jones, C. W. & Priest, D. G. Interaction of pyridoxal 5′-phosphate with apo-serine hydroxymethyl transferase. Biochim. Biophys. Acta 526, 369–374 (1978).
pubmed: 31178
doi: 10.1016/0005-2744(78)90128-6
Perry, C., Yu, S., Chen, J., Matharu, K. S. & Stover, P. J. Effect of vitamin B6 availability on serine hydroxymethyltransferase in MCF-7 cells. Arch. Biochem. Biophys. 462, 21–27 (2007).
pubmed: 17482557
pmcid: 1976282
doi: 10.1016/j.abb.2007.04.005
Giardina, G. et al. How pyridoxal 5′-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J. 282, 1225–1241 (2015).
pubmed: 25619277
doi: 10.1111/febs.13211
Ueland, P. M., Ulvik, A., Rios Avila, L., Midttun, O. & Gregory, J. F. Direct and functional biomarkers of vitamin B6 status. Annu. Rev. Nutr. 35, 33–70 (2015).
pubmed: 25974692
pmcid: 5988249
doi: 10.1146/annurev-nutr-071714-034330
Zempleni, J. & Kubler, W. The utilization of intravenously infused pyridoxine in humans. Clin. Chim. Acta 229, 27–36 (1994).
pubmed: 7988052
doi: 10.1016/0009-8981(94)90226-7
Martinez, M., Cuskelly, G. J., Williamson, J., Toth, J. P. & Gregory, J. F. Vitamin B-6 deficiency in rats reduces hepatic serine hydroxymethyl transferase and cystathionine β-synthase activities and rates of in vivo protein turnover, homocysteine remethylation and transsulfuration. J. Nutr. 130, 1115–1123 (2000).
pubmed: 10801907
doi: 10.1093/jn/130.5.1115
Scheer, J. B., Mackey, A. D. & Gregory, J. F. Activities of hepatic cytosolic and mitochondrial forms of serine hydroxymethyltransferase and hepatic glycine concentration are affected by vitamin B-6 intake in rats. J. Nutr. 135, 233–238 (2005).
pubmed: 15671219
doi: 10.1093/jn/135.2.233
Machover, D. et al. Pharmacologic modulation of 5-fluorouracil by folinic acid and pyridoxine for treatment of patients with advanced breast carcinoma. Sci. Rep. 12, 9079. https://doi.org/10.1038/s41598-022-12998-5 (2022).
doi: 10.1038/s41598-022-12998-5
pubmed: 35641554
pmcid: 9156777
Machover, D. et al. Pharmacologic modulation of 5-fluorouracil by folinic acid and high-dose pyridoxine for treatment of patients with digestive tract carcinomas. Sci. Rep. 11, 12668. https://doi.org/10.1038/s41598-021-92110-5 (2021).
doi: 10.1038/s41598-021-92110-5
pubmed: 34135415
pmcid: 8209008
Ink, S. L. & Henderson, L. M. Vitamin B6 metabolism. Ann. Rev. Nutr. 4, 455–470 (1984).
doi: 10.1146/annurev.nu.04.070184.002323
Di Salvo, M. L., Contestabile, R. & Safo, M. K. Vitamin B6 salvage enzymes: Mechanism, structure, and regulation. Biochim. Biophys. Acta 1814, 1597–1608 (2011).
pubmed: 21182989
doi: 10.1016/j.bbapap.2010.12.006
Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H. & Skipper, H. E. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother. Rep. 50, 219–244 (1966).
pubmed: 4957125
U.S. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (2005). Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers.
Coudoré, F. et al. Validation of an ultra-high performance liquid chromatography tandem mass spectrometric method for quantifying uracil and 5,6-dihydrouracil in human plasma. J. Chrom. Sci. 50, 877–884 (2012).
doi: 10.1093/chromsci/bms085
Machover, D. et al. 5-Fluorouracil combined with the pure [6S]-stereoisomer of folinic acid in high doses for treatment of patients with advanced colorectal carcinoma. A phase I-II Study. J. Natl. Cancer Inst. 84, 321–327 (1992).
pubmed: 1738182
doi: 10.1093/jnci/84.5.321
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228–247 (2009).
pubmed: 19097774
doi: 10.1016/j.ejca.2008.10.026
Pinker, K., Riedl, C. & Weber, W. A. Evaluating tumor response with FDG PET: Updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur. J. Nucl. Mol. Imaging 44, 55–66 (2017).
doi: 10.1007/s00259-017-3687-3
Schaumburg, H. et al. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N. Engl. J. Med. 309, 445–448 (1983).
pubmed: 6308447
doi: 10.1056/NEJM198308253090801
Rimland, B., Callaway, E. & Dreyfus, P. The effect of high doses of vitamin B6 on autistic children: A double blind crossover study. Am. J. Psychiatry 135, 472–475 (1978).
pubmed: 345827
doi: 10.1176/ajp.135.4.472
Carrick, S. et al. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst. Rev. 2, 1–125 (2009).
Piccart-Gebhart, M. J. et al. Taxanes alone or in combination with anthracyclines as first-line therapy of patients with metastatic breast cancer. J. Clin. Oncol. 26, 1980–1986 (2008).
pubmed: 18421049
doi: 10.1200/JCO.2007.10.8399
Egger, S. J. et al. Platinum-containing regimens for metastatic breast cancer. Cochrane Database Syst. Rev. 6, 1–130 (2017).
Bachet, J. B. et al. For FFCD investigators. FOLFIRINOX as induction treatment in rectal cancer patients with synchronous metastases: Results of the FFCD 1102 phase II trial. Eur. J. Cancer. 104, 108–116 (2018).
pubmed: 30343254
doi: 10.1016/j.ejca.2018.09.006
Ychou, M. et al. A randomized phase II trial of three intensified chemotherapy regimens in first-line treatment of colorectal cancer patients with initially unresectable or not optimally resectable liver metastases. The METHEP trial. Ann. Surg. Oncol. 20, 4289–4297 (2013).
pubmed: 23955585
doi: 10.1245/s10434-013-3217-x
Taieb, J. et al. Exploratory analyses assessing the impact of early tumour shrinkage and depth of response on survival outcomes in patients with RAS wild-type metastatic colorectal cancer receiving treatment in three randomised panitumumab trials. J. Cancer Res. Clin. Oncol. 144, 321–335 (2018).
pubmed: 29080924
doi: 10.1007/s00432-017-2534-z
Conroy, T. et al. For the groupe tumeurs digestives of unicancer and the PRODIGE intergroup. folfirinox versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).
pubmed: 21561347
doi: 10.1056/NEJMoa1011923
Wainberg, Z. A. et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet 402, 1272–1281 (2023).
pubmed: 37708904
doi: 10.1016/S0140-6736(23)01366-1
Philip, P. A. et al. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study. Lancet Gastroenterol. Hepatol. 5, 285–294 (2020).
pubmed: 31953079
doi: 10.1016/S2468-1253(19)30327-9
Machover, D. et al. Two consecutive phase II studies of oxaliplatin (l-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann. Oncol. 7, 95–98 (1996).
pubmed: 9081400
doi: 10.1093/oxfordjournals.annonc.a010489
Miltenburg, N. C. & Boogerd, W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat. Rev. 40, 872–882 (2014).
pubmed: 24830939
doi: 10.1016/j.ctrv.2014.04.004
Machover, D. et al. 5-FluorouraciI combined with the [6S]-stereoisomer of folinic acid in high doses for treatment of patients with advanced colorectal carcinoma. A phase I-II study of two consecutive regimens. Ann. Oncol. 4(Suppl 2), 29–35 (1993).
pubmed: 8353102
doi: 10.1093/annonc/4.suppl_2.S29
André, T. et al. Phase III study comparing a semimonthly with a monthly regimen of fluorouracil and leucovorin as adjuvant treatment for stage II and III colon cancer patients: Final results of GERCOR C96.1. J. Clin. Oncol. 25, 3732–3738 (2007).
pubmed: 17704423
doi: 10.1200/JCO.2007.12.2234
Suzue, R. & Tachibana, M. (1970) The uptake of pyridoxal phosphate by human red blood cells. J. Vitaminol. (Kyoto) 16, 164–171 (1970).
pubmed: 5507126
doi: 10.5925/jnsv1954.16.164
Maeda, N., Takahashi, K., Aono, K. & Shiga, T. Effect of pyridoxal 5′-phosphate on the oxygen affinity of human erythrocytes. Br. J. Haematol. 34, 501–509 (1976).
pubmed: 10958
doi: 10.1111/j.1365-2141.1976.tb03596.x
Musayev, F. N., Di Salvo, M. L., Ko, T. P., Schirch, V. & Safo, M. K. Structure, and properties of recombinant human pyridoxine 5′-phosphate oxidase. Protein Sci. 12, 1455–1463 (2003).
pubmed: 12824491
pmcid: 2323923
doi: 10.1110/ps.0356203
Beechey, R. P. & Happold, F. C. Pyridoxamine phosphate transaminase. Biochem. J. 66, 520–527 (1957).
pubmed: 13459890
pmcid: 1200050
doi: 10.1042/bj0660520
Fonda, M. L. Purification, and characterization of vitamin B6-phosphate phosphatase from human erythrocytes. J. Biol. Chem. 267, 15978–15983 (1992).
pubmed: 1322411
doi: 10.1016/S0021-9258(19)49630-0