Mechanism-based organization of neural networks to emulate systems biology and pharmacology models.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 May 2024
Historique:
received: 22 11 2023
accepted: 10 04 2024
medline: 28 5 2024
pubmed: 28 5 2024
entrez: 27 5 2024
Statut: epublish

Résumé

Deep learning neural networks are often described as black boxes, as it is difficult to trace model outputs back to model inputs due to a lack of clarity over the internal mechanisms. This is even true for those neural networks designed to emulate mechanistic models, which simply learn a mapping between the inputs and outputs of mechanistic models, ignoring the underlying processes. Using a mechanistic model studying the pharmacological interaction between opioids and naloxone as a proof-of-concept example, we demonstrated that by reorganizing the neural networks' layers to mimic the structure of the mechanistic model, it is possible to achieve better training rates and prediction accuracy relative to the previously proposed black-box neural networks, while maintaining the interpretability of the mechanistic simulations. Our framework can be used to emulate mechanistic models in a large parameter space and offers an example on the utility of increasing the interpretability of deep learning networks.

Identifiants

pubmed: 38802422
doi: 10.1038/s41598-024-59378-9
pii: 10.1038/s41598-024-59378-9
doi:

Substances chimiques

Naloxone 36B82AMQ7N
Analgesics, Opioid 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12082

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Alzubi, J., Nayyar, A. & Kumar, A. Machine Learning from Theory to Algorithms: An Overview. In Second National Conference on Computational Intelligence (Ncci 2018), 1142 (2018).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017).
doi: 10.1038/nature24270 pubmed: 29052630
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P. & Suman, R. Artificial Intelligence (AI) applications for marketing: A literature-based study. Int. J. Intell. Netw. 3, 119 (2022).
Bose, P., Roy, S. & Ghosh, P. A comparative NLP-based study on the current trends and future directions in COVID-19 research. Ieee Access 9, 78341–78355 (2021).
doi: 10.1109/ACCESS.2021.3082108 pubmed: 34786315
Haleem, A. Artificial Intelligence in Biological Sciences.
Paul, D. et al. Artificial intelligence in drug discovery and development. Drug Discov Today 26(1), 80–93 (2021).
doi: 10.1016/j.drudis.2020.10.010 pubmed: 33099022
Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices .
Artificial Intelligence and Machine Learning in Software as a Medical Device. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device .
Hsu, W. & Elmore, J. G. Shining light into the black box of machine learning. Jnci-J. Natl. Cancer Inst. 111(9), 877–879 (2019).
doi: 10.1093/jnci/djy226
Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019).
doi: 10.1038/s42256-019-0048-x pubmed: 35603010 pmcid: 9122117
Rupp, M. et al. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 058301 (2012).
doi: 10.1103/PhysRevLett.108.058301 pubmed: 22400967
Pretorius, C. J., Du Plessis, M. C. & Cilliers, C. B. Simulating robots without conventional physics: A neural network approach. J. Intell. Robot. Syst. 71(3–4), 319–348 (2013).
doi: 10.1007/s10846-012-9782-6
Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8(4), 3192–3203 (2017).
doi: 10.1039/C6SC05720A pubmed: 28507695 pmcid: 5414547
Wang, S. et al. Massive computational acceleration by using neural networks to emulate mechanism-based biological models. Nat. Commun. 10(1), 4354 (2019).
doi: 10.1038/s41467-019-12342-y pubmed: 31554788 pmcid: 6761138
Mann, J. et al. Development of a translational model to assess the impact of opioid overdose and naloxone dosing on respiratory depression and cardiac arrest. Clin. Pharmacol. Ther. 112(5), 1020–1032 (2022).
doi: 10.1002/cpt.2696 pubmed: 35766413
Algera, M. H. et al. Tolerance to opioid-induced respiratory depression in chronic high-dose opioid users: A model-based comparison with opioid-naive individuals. Clin. Pharmacol. Ther. 109(3), 637 (2020).
doi: 10.1002/cpt.2027 pubmed: 32865832 pmcid: 7983936
Duffin, J. Measuring the ventilatory response to hypoxia. J. Physiol. 584(Pt 1), 285–293 (2007).
doi: 10.1113/jphysiol.2007.138883 pubmed: 17717019 pmcid: 2277066
Yassen, A. et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin. Pharmacol. Ther. 81(1), 50–58 (2007).
doi: 10.1038/sj.clpt.6100025 pubmed: 17185999
USFDA. NARCAN Nasal Spray Label. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/208411lbl.pdf . (2015).
Yassen, A. et al. Mechanism-based pharmacokinetic-pharmacodynamic modelling of the reversal of buprenorphine-induced respiratory depression by naloxone: A study in healthy volunteers. Clin. Pharmacokinet. 46(11), 965–980 (2007).
doi: 10.2165/00003088-200746110-00004 pubmed: 17922561
Pedregosa, F. V. G., Gramfort, A., Michel, V., Thirion, B. & Duchesnay, E. Scikit-learn: Machine learning in python. J. Machine Learn. Res. 12, 2825 (2011).
R.C.T. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.; Available from: https://www.R-project.org/ (2021).
Soetaert, K., Thomas Petzoldt, R. & Setzer, W. Solving differential equations in R: Package deSolve. J. Statist. Softw. https://doi.org/10.18637/jss.v033.i09 (2010).
doi: 10.18637/jss.v033.i09
Martín Abadi, A. A., Paul Barham, Eugene Brevdo, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015).
Lu, H. M. et al. Brain intelligence: Go beyond artificial intelligence. Mobile Netw. Appl. 23(2), 368–375 (2018).
doi: 10.1007/s11036-017-0932-8
Schaeffer, R. No free lunch from deep learning in neuroscience: A case study through models of the entorhinal-hippocampal circuit. Adv. Neur. Inf. Process. Syst. 35, 16052–16067 (2022).
Tøndel, K. & Martens, H. Analyzing complex mathematical model behavior by partial least squares regression-based multivariate metamodeling. WIREs Comput. Statist. 6(6), 440–475 (2014).
doi: 10.1002/wics.1325
McNally, K., Cotton, R. & Loizou, G. D. A workflow for global sensitivity analysis of PBPK models. Front. Pharmacol. 2, 31 (2011).
doi: 10.3389/fphar.2011.00031 pubmed: 21772819 pmcid: 3128931
Viceconti, M. et al. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).
doi: 10.1016/j.ymeth.2020.01.011 pubmed: 31991193 pmcid: 7883933
Tondel, K. et al. Multi-way metamodelling facilitates insight into the complex input-output maps of nonlinear dynamic models. BMC Syst. Biol. 6, 88 (2012).
doi: 10.1186/1752-0509-6-88 pubmed: 22818032 pmcid: 3483253
Tondel, K. et al. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst. Biol. 5, 90 (2011).
doi: 10.1186/1752-0509-5-90 pubmed: 21627852 pmcid: 3127793
USFDA. KLOXXADO (naloxone hydrochloride) nasal spray label. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212045s000lbl.pdf . (2021).
Krieter, P. et al. Fighting fire with fire: Development of intranasal nalmefene to treat synthetic opioid overdose. J. Pharmacol. Exp. Ther. 371(2), 409–415 (2019).
doi: 10.1124/jpet.118.256115 pubmed: 30940694 pmcid: 6863453

Auteurs

John Mann (J)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Hamed Meshkin (H)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Joel Zirkle (J)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Xiaomei Han (X)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Bradlee Thrasher (B)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Anik Chaturbedi (A)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Ghazal Arabidarrehdor (G)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Zhihua Li (Z)

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64 Rm 2084, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA. Zhihua.li@fda.hhs.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH