Depression and type 2 diabetes: A causal relationship and mechanistic pathway.

autophagy dysfunction depression mitochondrial dysfunction oxidative stress type 2 diabetes

Journal

Diabetes, obesity & metabolism
ISSN: 1463-1326
Titre abrégé: Diabetes Obes Metab
Pays: England
ID NLM: 100883645

Informations de publication

Date de publication:
27 May 2024
Historique:
revised: 16 04 2024
received: 09 03 2024
accepted: 16 04 2024
medline: 28 5 2024
pubmed: 28 5 2024
entrez: 28 5 2024
Statut: aheadofprint

Résumé

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.

Identifiants

pubmed: 38802993
doi: 10.1111/dom.15630
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : University of Witten-Herdecke Germany

Informations de copyright

© 2024 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

Références

Gold SM, Köhler‐Forsberg O, Moss‐Morris R, et al. Comorbid depression in medical diseases. Nat Rev Dis Primers. 2020;6(1):69.
Shorey S, Ng ED, Wong CH. Global prevalence of depression and elevated depressive symptoms among adolescents: a systematic review and meta‐analysis. Br J Clin Psychol. 2022;61(2):287‐305.
Horwitz AV, Wakefield JC, Lorenzo‐Luaces L. History of depression. The Oxford Handbook of Mood Disorders; Oxford Press; 2016:11‐23.
Abernethy AD, Currier JM, Witvliet CO, et al. Understanding the roles of religious comfort and strain on depressive symptoms in an inpatient psychiatric setting. Psycholog Relig Spiritual. 2020;12(3):366‐375.
Rafique R, Anjum A, Raheem SS. Efficacy of surah Al‐Rehman in managing depression in Muslim women. J Relig Health. 2019;58:516‐526.
Wadhwa A. The history of drug development in psychiatry: a lesson in serendipity. Drug Development in Psychiatry Springer. 2023;30:19‐35.
Hsiung K, Skikic M. Mood disorder or psychotic disorder? Yes: a case report on cycloid psychosis. J Psychiatr Pract. 2023;29(4):333‐339.
Moncrieff J, Horowitz M. Depression Is Probably Not Caused by a Chemical Imbalance in the Brain–New Study. 2022.
Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci. 2022;4(1):7–20. doi:10.31887/DCNS.2002.4.1/bbondy
Fasipe OJ. Moving from the old monoaminergic theory toward the emerging hypothesis in the rational design of rapid‐onset novel antidepressants. Medical Journal of Dr DY Patil University. 2019;12(4):292‐315.
Ogłodek E, Szota A, Just M, Moś D, Araszkiewicz A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol Rep. 2014;66:776‐781.
Blumenthal JA, Lett HS, Babyak MA, et al. Depression as a risk factor for mortality after coronary artery bypass surgery. The Lancet. 2003;362(9384):604‐609.
Wimberley T, Horsdal HT, Brikell I, et al. Temporally ordered associations between type 2 diabetes and brain disorders–a Danish register‐based cohort study. BMC Psychiatry. 2022;22(1):1‐12.
Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psych. 2018;9:334.
Smith TB, McCullough ME, Poll J. Religiousness and depression: evidence for a main effect and the moderating influence of stressful life events. Psychol Bull. 2003;129(4):614‐636.
Husain SF, Tang T‐B, Yu R, et al. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major depression and borderline personality disorder. EBioMedicine. 2020;51:102586.
Estrela M, Herdeiro MT, Ferreira PL, Roque F. The use of antidepressants, anxiolytics, sedatives and hypnotics in Europe: focusing on mental health care in Portugal and prescribing in older patients. Int J Environ Res Public Health. 2020;17(22):8612.
Calarco CA, Lobo MK. Depression and substance use disorders: clinical comorbidity and shared neurobiology. Int Rev Neurobiol. 2021;157:245‐309. doi:10.1016/bs.irn.2020.09.004
McCarter T. Depression overview. American Health & Drug Benefits. 2008;1(3):44‐51.
Khanna P, Chattu VK, Aeri BT. Nutritional aspects of depression in adolescents‐a systematic review. Int J Prev Med. 2019;10:10.
Camara A, Sow M, Touré A, et al. Anxiety and depression among HIV patients of the infectious disease department of Conakry University Hospital in 2018. Epidemiol Infect. 2020;148:e8.
Sanat ZM, Mohajeri‐Tehrani MR. Psychotic disorder as the first manifestation of Addison disease: a case report. Int J Endocrinol Metab. 2022;20(1):e121011.
Tang R, Wang J, Yang L, et al. Subclinical hypothyroidism and depression: a systematic review and meta‐analysis. Front Endocrinol (Lausanne). 2019;10:340.
Frimodt‐Møller KE, Møllegaard Jepsen JR, Feldt‐Rasmussen U, Krogh J. Hippocampal volume, cognitive functions, depression, anxiety, and quality of life in patients with Cushing syndrome. J Clin Endocrinol Metabol. 2019;104(10):4563‐4577.
Kearns AE, Espiritu RP, Vickers Douglass K, Thapa P, Wermers RA. Clinical characteristics and depression score response after parathyroidectomy in primary hyperparathyroidism. Clin Endocrinol (Oxf). 2019;91(3):464‐470.
Ryan M, Eatmon CV, Slevin JT. Drug treatment strategies for depression in Parkinson disease. Expert Opin Pharmacother. 2019;20(11):1351‐1363.
Bruno A, Dolcetti E, Rizzo FR, et al. Inflammation‐associated synaptic alterations as shared threads in depression and multiple sclerosis. Front Cell Neurosci. 2020;14:169.
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology. 2019;44(1):59‐70.
Possidente C, Fanelli G, Serretti A, Fabbri C. Clinical insights into the cross‐link between mood disorders and type 2 diabetes: a review of longitudinal studies and mendelian randomisation analyses. Neurosci Biobehav Rev. 2023;152:105298.
Renn BN, Feliciano L, Segal DL. The bidirectional relationship of depression and diabetes: a systematic review. Clin Psychol Rev. 2011;31(8):1239‐1246. doi:10.1016/j.cpr.2011.08.001
Al‐Kuraishy HM, Al‐Gareeb AI, Alblihed M, Guerreiro SG, Cruz‐Martins N, Batiha GE. COVID‐19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med. 2021;8:644095. doi:10.3389/fcvm.2021.644095
Al‐Kuraishy HM, Al‐Gareeb AI, Waheed HJ, Al‐Maiahy TJ. Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: concepts and clinical practice. J Adv Pharm Technol Res. 2018;9(3):80‐86.
Naumovs V, Groma V, Mednieks J. From low‐grade inflammation in osteoarthritis to neuropsychiatric sequelae: a narrative review. Int J Mol Sci. 2022;23(24):16031.
Al‐Kuraishy HM, Al‐Gareeb AI, Shams HA, Al‐Mamorri F. Endothelial dysfunction and inflammatory biomarkers as a response factor of concurrent coenzyme Q10 add‐on metformin in patients with type 2 diabetes mellitus. J Laboratory Physicians. 2019;11(4):317‐322.
Al‐Kuraishy HM, Hamada MT, Al‐Samerraie AY. Effects of metformin on omentin levels in a newly diagnosed type II diabetes mellitus: randomized, placebo controlled study. Mustansiriya Med J. 2016;15:49‐55.
Al‐Nami MS, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Mamoori F. Metabolic profile and prolactin serum levels in men with type 2 diabetes mellitus: old‐new rubric. Int J Crit Illn Inj Sci. 2019;9(3):120‐126.
Alruwaili NS, al‐Kuraishy HM, al‐Gareeb AI, et al. Antidepressants and type 2 diabetes: highways to knowns and unknowns. Diabetol Metab Syndr. 2023;15(1):1‐14.
Fanelli G, Serretti A. Depression, antidepressants, and insulin resistance: which link? Eur Neuropsychopharmacol. 2022;60:4‐6.
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: a treatment target for cognitive impairment and anhedonia in depression. Exp Neurol. 2019;315:1‐8.
Fanelli G, Mota NR, Salas‐Salvadó J, et al. The link between cognition and somatic conditions related to insulin resistance in the UK biobank study cohort: a systematic review. Neurosci Biobehav Rev. 2022;143:104927.
Kraus C, Kautzky A, Watzal V, et al. Body mass index and clinical outcomes in individuals with major depressive disorder: findings from the GSRD European multicenter database. J Affect Disord. 2023;335:349‐357.
Kloiber S, Ising M, Reppermund S, et al. Overweight and obesity affect treatment response in major depression. Biol Psychiatry. 2007;62(4):321‐326.
Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta‐analysis. Diabetes Care. 2001;24(6):1069‐1078.
Farooqi A, Gillies C, Sathanapally H, et al. A systematic review and meta‐analysis to compare the prevalence of depression between people with and without type 1 and type 2 diabetes. Prim Care Diabetes. 2022;16(1):1‐10. doi:10.1016/j.pcd.2021.11.001
van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. The Lancet Diabetes & Endocrinology. 2020;8(4):325‐336. doi:10.1016/s2213‐8587(19)30405‐x
Khaledi M, Haghighatdoost F, Feizi A, Aminorroaya A. The prevalence of comorbid depression in patients with type 2 diabetes: an updated systematic review and meta‐analysis on huge number of observational studies. Acta Diabetol. 2019;56:631‐650.
Al‐Ozairi A, Taghadom E, Irshad M, Al‐Ozairi E. Association between depression, diabetes self‐care activity and glycemic control in an Arab population with type 2 diabetes. Diabetes Metab Syndr Obes. 2023;16:321‐329.
Khan P, Qayyum N, Malik F, Khan T, Khan M, Tahir A. Incidence of anxiety and depression among patients with type 2 diabetes and the predicting factors. Cureus. 2019;11(3):e4254. doi:10.7759/cureus.4254
Li C, Ford ES, Strine TW, Mokdad AH. Prevalence of depression among U.S. adults with diabetes: findings from the 2006 behavioral risk factor surveillance system. Diabetes Care. 2008;31(1):105‐107. doi:10.2337/dc07‐1154
De Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: a meta‐analysis. Psychosom Med. 2001;63(4):619‐630.
D'Amato C, Morganti R, Greco C, et al. Diabetic peripheral neuropathic pain is a stronger predictor of depression than other diabetic complications and comorbidities. Diabetes and Vascular Disease Research. 2016;13(6):418‐428.
Dziemidok P, Dąbrowski M, Makara‐Studzińska M. Relationship between diabetic neuropathy and occurrence of depression among diabetic patients. Psychiatr pol. 2016;50:407‐415.
van Reedt Dortland AK, Giltay EJ, van Veen T, Zitman FG, Penninx BW. Longitudinal relationship of depressive and anxiety symptoms with dyslipidemia and abdominal obesity. Psychosom Med. 2013;75(1):83‐89.
Feingold KR, Grunfeld C. Role of cytokines in inducing hyperlipidemia. Diabetes. 1992;41(Supplement_2):97‐101.
Wei Y‐G, Cai D‐B, Liu J, et al. Cholesterol and triglyceride levels in first‐episode patients with major depressive disorder: a meta‐analysis of case‐control studies. J Affect Disord. 2020;266:465‐472.
Roohafza H, Sadeghi M, Afshar H, Mousavi G, Shirani S. Evaluation of lipid profile in patient with major depressive disorder and generalized anxiety disorder. ARYA Atheroscler. 2010;1(1):15‐18.
Lustman PJ, Clouse RE, Ciechanowski PS, Hirsch IB, Freedland KE. Depression‐related hyperglycemia in type 1 diabetes: a mediational approach. Psychosom Med. 2005;67(2):195‐199.
Bampi SR, Casaril AM, Domingues M, et al. Depression‐like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1‐methyl‐3‐(phenylselanyl)‐1H‐indole. J Psychiatr Res. 2020;120:91‐102.
Yang Y, Xie B, Ju C, et al. The association of decreased serum GDNF level with hyperglycemia and depression in type 2 diabetes mellitus. Endocr Pract. 2019;25(9):951‐965.
Herrera R, Manjarrez G, Hernandez J. Inhibition and kinetic changes of brain tryptophan‐5‐hydroxylase during insulin‐dependent diabetes mellitus in the rat. Nutr Neurosci. 2005;8(1):57‐62.
Miyata S, Hirano S, Kamei J. Diabetes attenuates the antidepressant‐like effect mediated by the activation of 5‐HT1A receptor in the mouse tail suspension test. Neuropsychopharmacology. 2004;29(3):461‐469.
Wilhelm K, Gillis I, Reddy J, et al. Association between serotonin transporter promoter polymorphisms and psychological distress in a diabetic population. Psychiatry Res. 2012;200(2–3):343‐348.
Sandrini M, Vitale G, Vergoni AV, Ottani A, Bertolini A. Streptozotocin‐induced diabetes provokes changes in serotonin concentration and on 5‐HT1A and 5‐HT2 receptors in the rat brain. Life Sci. 1997;60(16):1393‐1397.
Oury F, Karsenty G. Towards a serotonin‐dependent leptin roadmap in the brain. Trends Endocrinol Metab. 2011;22(9):382‐387.
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, et al. Role of brain renin–angiotensin system in depression: a new perspective. CNS Neurosci Ther. 2023;30:e14525.
Zhang Z, Du Y, Chen L, Liu Y, Du B. Effects of the selective serotonin reuptake inhibitor fluoxetine on glucose metabolism: a systematic review. Asian J Psychiatr. 2022;73:103092. doi:10.1016/j.ajp.2022.103092
Liu B, Ruz‐Maldonado I, Toczyska K, et al. The selective serotonin reuptake inhibitor fluoxetine has direct effects on beta cells, promoting insulin secretion and increasing beta‐cell mass. Diabetes Obes Metab. 2022;24(10):2038‐2050.
Woo YS, Lim HK, Wang S‐M, Bahk W‐M. Clinical evidence of antidepressant effects of insulin and anti‐hyperglycemic agents and implications for the pathophysiology of depression—a literature review. Int J Mol Sci. 2020;21(18):6969.
Reza M, Taylor C, Towse K, Ward J, Hendra T. Insulin improves well‐being for selected elderly type 2 diabetic subjects. Diabetes Res Clin Pract. 2002;55(3):201‐207.
Al‐Kuraishy HM, Alsaidan AA, Al‐Gareeb AI, Alexiou A, Papadakis M, Batiha GES. Sildenafil and depression: true or false prophecy. CNS Neurosci Ther. 2023;29(10):3108‐3109.
Snoek FJ, Bremmer MA, Hermanns N. Constructs of depression and distress in diabetes: time for an appraisal. The Lancet Diabetes & Endocrinology. 2015;3(6):450‐460.
Ascher‐Svanum H, Zagar A, Jiang D, et al. Associations between glycemic control, depressed mood, clinical depression, and diabetes distress before and after insulin initiation: an exploratory, post hoc analysis. Diabetes Ther. 2015;6:303‐316.
Walker RJ, Gebregziabher M, Martin‐Harris B, Egede LE. Understanding the influence of psychological and socioeconomic factors on diabetes self‐care using structured equation modeling. Patient Educ Couns. 2015;98(1):34‐40.
Nouwen A, Adriaanse M, van Dam K, et al. Longitudinal associations between depression and diabetes complications: a systematic review and meta‐analysis. Diabet Med. 2019;36(12):1562‐1572.
Wu C‐S, Hsu L‐Y, Wang S‐H. Association of depression and diabetes complications and mortality: a population‐based cohort study. Epidemiol Psychiatr Sci. 2020;29:e96.
Black SA, Markides KS, Ray LA. Depression predicts increased incidence of adverse health outcomes in older Mexican Americans with type 2 diabetes. Diabetes Care. 2003;26(10):2822‐2828.
Bruce D, Davis W, Starkstein S, Davis T. A prospective study of depression and mortality in patients with type 2 diabetes: the Fremantle diabetes study. Diabetologia. 2005;48:2532‐2539.
Deschênes SS, Burns RJ, Pouwer F, Schmitz N. Diabetes complications and depressive symptoms: prospective results from the montreal diabetes health and well‐being study. Psychosom Med. 2017;79(5):603‐612.
Martinac M, Pehar D, Karlović D, Babić D, Marčinko D, Jakovljević M. Metabolic syndrome, activity of the hypothalamic‐pituitary‐adrenal axis and inflammatory mediators in depressive disorder. Acta Clin Croat. 2014;53(1):55‐70.
Wang Y‐Y, Lin S‐Y, Chuang Y‐H, Sheu WH‐H, Tung K‐C, Chen C‐J. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology. 2014;155(4):1235‐1246.
Champaneri S, Wand GS, Malhotra SS, Casagrande SS, Golden SH. Biological basis of depression in adults with diabetes. Curr Diab Rep. 2010;10:396‐405.
Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2017;1391(1):20‐34.
Shomaker LB, Tanofsky‐Kraff M, Stern EA, et al. Longitudinal study of depressive symptoms and progression of insulin resistance in youth at risk for adult obesity. Diabetes Care. 2011;34(11):2458‐2463.
Knol MJ, Twisk JW, Beekman AT, Heine RJ, Snoek FJ, Pouwer F. Depression as a risk factor for the onset of type 2 diabetes mellitus. A Meta‐Analysis. Diabetologia. 2006;49:837‐845.
Golden SH. A review of the evidence for a neuroendocrine link between stress, depression and diabetes mellitus. Curr Diabetes Rev. 2007;3(4):252‐259.
McIntyre RS, Soczynska JK, Konarski JZ, et al. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann Clin Psychiatry. 2007;19(4):257‐264.
Stetler C, Miller GE. Depression and hypothalamic‐pituitary‐adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011;73(2):114‐126.
Lederbogen F, Hummel J, Fademrecht C, et al. Flattened circadian cortisol rhythm in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2011;119(9):573‐575.
Hackett RA, Steptoe A, Kumari M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study. J Clin Endocrinol Metabol. 2014;99(12):4625‐4631.
Kleinridders A, Pothos EN. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior. Current Nutrition Reports. 2019;8:83‐91.
Alrouji M, Al‐Kuraishy HM, Al‐Buhadily AK, Al‐Gareeb AI, Elekhnawy E, Batiha GE‐S. DPP‐4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship. Pharmacol Rep. 2023;75:1‐14.
Nguyen TTL, Chan LC, Borreginne K, Kale RP, Hu C, Tye SJ. A review of brain insulin signaling in mood disorders: from biomarker to clinical target. Neurosci Biobehav Rev. 2018;92:7‐15.
Kemp DE, Ismail‐Beigi F, Ganocy SJ, et al. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord. 2012;136(3):1164‐1173.
Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci. 2015;112(11):3463‐3468.
Gupta D, Kurhe Y, Radhakrishnan M. Antidepressant effects of insulin in streptozotocin induced diabetic mice: modulation of brain serotonin system. Physiol Behav. 2014;129:73‐78.
Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP. Downregulation of hypothalamic insulin receptor expression elicits depressive‐like behaviors in rats. Behav Brain Res. 2011;222(1):230‐235.
Sharma S, Fulton S. Diet‐induced obesity promotes depressive‐like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes (Lond). 2013;37(3):382‐389.
Colle R, de Larminat D, Rotenberg S, et al. Pioglitazone could induce remission in major depression: a meta‐analysis. Neuropsychiatr Dis Treat. 2016;9‐16:9‐16.
Sharma AN, Ligade SS, Sharma JN, Shukla P, Elased KM, Lucot JB. GLP‐1 receptor agonist liraglutide reverses long‐term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats. Metab Brain Dis. 2015;30:519‐527.
Al‐Kuraishy HM, Al‐Gareeb AI, Alsayegh AA, et al. A potential link between visceral obesity and risk of Alzheimer's disease. Neurochem Res. 2022;48:745‐766. doi:10.1007/s11064‐022‐03817‐4
Al‐Kuraishy HM, Al‐Gareeb AI, Saad HM, Batiha GE‐S. Long‐term use of metformin and Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology. 2023;31:1‐9.
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring H‐U. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96:1169‐1209.
De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer's disease? Alzheimers Dement. 2014;10(1):S26‐S32.
Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatrica. 2020;32(1):1‐9.
Labouèbe G, Liu S, Dias C, et al. Insulin induces long‐term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci. 2013;16(3):300‐308.
Detka J, Kurek A, Basta‐Kaim A, Kubera M, Lasoń W, Budziszewska B. Neuroendocrine link between stress, depression and diabetes. Pharmacol Rep. 2013;65(6):1591‐1600.
Grillo CA, Piroli GG, Lawrence RC, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes. 2015;64(11):3927‐3936.
Papazoglou IK, Jean A, Gertler A, Taouis M, Vacher C‐M. Hippocampal GSK3β as a molecular link between obesity and depression. Mol Neurobiol. 2015;52:363‐374.
Zheng W‐H, Quirion R. Insulin‐like growth factor‐1 (IGF‐1) induces the activation/phosphorylation of Akt kinase and cAMP response element‐binding protein (CREB) by activating different signaling pathways in PC12 cells. BMC Neurosci. 2006;7:1‐10.
Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet‐induced obesity. Nat Med. 2004;10(7):739‐743.
AlRuwaili R, Al‐Kuraishy HM, Al‐Gareeb AI, et al. The possible role of brain‐derived neurotrophic factor in epilepsy. Neurochem Res. 2023;49:533‐547. doi:10.1007/s11064‐023‐04064‐x
Ali NH, Al‐kuraishy HM, Al‐Gareeb AI, Alnaaim SA, Saad HM, Batiha GE‐S. The molecular pathway of p75 Neurotrophin receptor (p75NTR) in Parkinson's disease: the way of new inroads. Mol Neurobiol. 2023:2469‐2480. doi:10.1007/s12035‐023‐03727‐8
AlAnazi FH, Al‐kuraishy HM, Alexiou A, et al. Primary hypothyroidism and Alzheimer's disease: a tale of two. Cell Mol Neurobiol. 2023;43(7):3405‐3416. doi:10.1007/s10571‐023‐01392‐y
Alnaaim SA, al‐kuraishy HM, al‐Gareeb AI, et al. New insights on the potential anti‐epileptic effect of metformin: mechanistic pathway. J Cell Mol Med. 2023;27:3953‐3965.
Suwa M, Kishimoto H, Nofuji Y, et al. Serum brain‐derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism. 2006;55(7):852‐857.
Śmieszek A, Stręk Z, Kornicka K, Grzesiak J, Weiss C, Marycz K. Antioxidant and anti‐senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain‐derived neurotrophic factor levels—an ex vivo study. Int J Mol Sci. 2017;18(4):872.
Fujinami A, Ohta K, Obayashi H, et al. Serum brain‐derived neurotrophic factor in patients with type 2 diabetes mellitus: relationship to glucose metabolism and biomarkers of insulin resistance. Clin Biochem. 2008;41(10–11):812‐817.
Li B, Lang N, Cheng Z‐F. Serum levels of brain‐derived neurotrophic factor are associated with diabetes risk, complications, and obesity: a cohort study from Chinese patients with type 2 diabetes. Mol Neurobiol. 2016;53:5492‐5499.
Boyuk B, Degirmencioglu S, Atalay H, et al. Relationship between levels of brain‐derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus. J Diabetes Res. 2014;2014:1‐6.
Lee SS, Yoo JH, Kang S, et al. The effects of 12 weeks regular aerobic exercise on brain‐derived neurotrophic factor and inflammatory factors in juvenile obesity and type 2 diabetes mellitus. J Phys Ther Sci. 2014;26(8):1199‐1204.
Koo JW, Chaudhury D, Han M‐H, Nestler EJ. Role of mesolimbic brain‐derived neurotrophic factor in depression. Biol Psychiatry. 2019;86(10):738‐748.
Kunugi H, Hori H, Adachi N, Numakawa T. Interface between hypothalamic‐pituitary‐adrenal axis and brain‐derived neurotrophic factor in depression. Psychiatry Clin Neurosci. 2010;64(5):447‐459.
Shirayama Y, Chen AC‐H, Nakagawa S, Russell DS, Duman RS. Brain‐derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251‐3261.
Castrén E, Monteggia LM. Brain‐derived neurotrophic factor signaling in depression and antidepressant action. Biol Psychiatry. 2021;90(2):128‐136.
Ren‐Patterson RF, Cochran LW, Holmes A, et al. Loss of brain‐derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res. 2005;79(6):756‐771.
Numakawa T, Odaka H, Adachi N. Actions of brain‐derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int J Mol Sci. 2017;18(11):2312.
Li H‐Y, Zhao Y‐H, Zeng M‐J, et al. Saikosaponin D relieves unpredictable chronic mild stress induced depressive‐like behavior in rats: involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology (Berl). 2017;234:3385‐3394.
Wang H, Zhao Y, Wang YJ, et al. Antidepressant‐like effects of tetrahydroxystilbene glucoside in mice: involvement of BDNF signaling cascade in the hippocampus. CNS Neurosci Ther. 2017;23(7):627‐636.
Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S. Circadian and ultradian glucocorticoid rhythmicity: implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol. 2016;41:44‐58.
Lang BT, Yan Y, Dempsey RJ, Vemuganti R. Impaired neurogenesis in adult type‐2 diabetic rats. Brain Res. 2009;1258:25‐33.
Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13:1‐6.
Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Maiahy TJ. Concept and connotation of oxidative stress in preeclampsia. J Lab Physicians. 2018;10(3):276‐282.
Babalghith AO, Al‐kuraishy HM, Al‐Gareeb AI, et al. The potential role of growth differentiation factor 15 in COVID‐19: a corollary subjective effect or not? Diagnostics. 2022;12(9):2051.
Al‐Kuraishy HM, Al‐Gareeb AI, Qusti S, Alshammari EM, Atanu FO, Batiha GE‐S. Arginine vasopressin and pathophysiology of COVID‐19: an innovative perspective. Biomed Pharmacother. 2021;143:112193.
Byrne JF, Healy C, Mongan D, et al. Transdiagnostic inflammatory subgroups among psychiatric disorders and their relevance to role functioning: a nested case‐control study of the ALSPAC cohort. Transl Psychiatry. 2022;12(1):377.
Al‐Kuraishy HM, Sami OM, Hussain NR, Al‐Gareeb AI. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced‐oxidative stress: the intriguing effect. J Adv Pharm Technol Res. 2020;11(3):142‐147.
Hussien NR, Al‐Naimi MS, Rasheed HA, Al‐Kuraishy HM, Al‐Gareeb AI. Sulfonylurea and neuroprotection: the bright side of the moon. J Adv Pharm Technol Res. 2018;9(4):120‐123.
Al‐Kuraishy HM, Al‐Gareeb AI. Effect of orlistat alone or in combination with garcinia cambogia on visceral adiposity index in obese patients. J Intercult Ethnopharmacol. 2016;5(4):408‐414.
Mostafa‐Hedeab G, Al‐Kuraishy HM, Al‐Gareeb AI, Jeandet P, Saad HM, Batiha GE‐S. A raising dawn of pentoxifylline in management of inflammatory disorders in Covid‐19. Inflammopharmacology. 2022;30:1‐11.
Al‐kuraishy HM, Al‐Gareeb AI, Al‐Niemi MS, et al. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in Covid‐19. Inflammation. 2022;45(4):1651‐1667.
Abdul‐Hadi M, Naji M, Shams H, et al. Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: the potential role of metformin and sitagliptin. Original article. Biomedical and Biotechnology Research Journal (BBRJ). 2020;4(2):166‐172. doi:10.4103/bbrj.bbrj_7_20
Alsubaie N, Al‐kuraishy HM, Al‐Gareeb AI, et al. Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci. 2022;12(10):1290.
Batiha GE‐S, Al‐Kuraishy HM, Al‐Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson's disease: a faraway snapshot but so close. Inflammopharmacology. 2023;31(1):37‐56.
Al‐Buhadily AK, Al‐Uqabi RU, Al‐Gareeb AI. Evaluation of protective effect of metformin in rats with experimental osteoarthritis. Mustansiriya Medical Journal. 2023;22(1):50‐53.
Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270‐1276.
Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014;12(2):140‐147.
Al‐Kuraishy HM, Jabir MS, Albuhadily AK, Al‐Gareeb AI, Rafeeq MF. The link between Alzheimer disease and metabolic syndrome: a mutual relationship and long rigorous investigation. Ageing Research Reviews. 2023;91:102084.
Ceretta LB, Réus GZ, Stringari RB, et al. Imipramine treatment reverses depressive‐like behavior in alloxan‐diabetic rats. Diabetes Metab Res Rev. 2012;28(2):139‐144.
Réus GZ, dos Santos MAB, Abelaira HM, et al. Antioxidant treatment ameliorates experimental diabetes‐induced depressive‐like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev. 2016;32(3):278‐288.
Munoz‐Castaneda J, Montilla P, Padillo F, Bujalance I, Munoz M, Muntane J. Role of serotonin in cerebral oxidative stress in rat. Acta Neurobiol Exp (Wars). 2006;66(1):1‐6.
Correia AS, Cardoso A, Vale N. Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants. 2023;12(2):470.
Ribaudo G, Bortoli M, Witt CE, et al. ROS‐scavenging Selenofluoxetine derivatives inhibit in vivo serotonin reuptake. ACS Omega. 2022;7(10):8314‐8322.
Correia AS, Cardoso A, Vale N. Significant differences in the reversal of cellular stress induced by hydrogen peroxide and corticosterone by the application of mirtazapine or L‐tryptophan. International Journal of Translational Medicine. 2022;2(3):482‐505.
Al‐kuraishy HM, Jabir MS, Al‐Gareeb AI, Saad HM, Batiha GE‐S, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: yes or No? Autophagy. 20(2):1‐16. doi:10.1080/15548627.2023.2259281
Ali NH, Al‐kuraishy HM, Al‐Gareeb AI, et al. Autophagy and autophagy signaling in epilepsy: possible role of autophagy activator. Mol Med. 2023;29(1):142.
Lee Y‐h, Kim J, Park K, Lee M‐S. β‐Cell autophagy: mechanism and role in β‐cell dysfunction. Molecular Metabolism. 2019;27:S92‐S103.
Alrouji M, Al‐Kuraishy HM, Al‐Gareeb AI, et al. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr. 2023;15(1):1‐16.
AlAnazi FH, Al‐Kuraishy HM, Al‐Gareeb AI, et al. Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: controversial points and a promising arena. J Diabetes. 2023;15:397‐408. 10.1111/1753‐0407.13389
Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: from pathophysiology to therapeutic implications. Pharmacol Res. 2021;168:105586.
Alrouji M, Al‐Kuraishy HM, Al‐Mahammadawy A‐kAA, Al‐Gareeb AI, Saad HM, Batiha GE‐S. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci. 2023;44:3781‐3794. doi:10.1007/s10072‐023‐06926‐2
Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, et al. NF‐κB/NLRP3 inflammasome axis and risk of Parkinson's disease in type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med. 2023;27:1775‐1789.
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells. 2021;10(2):314.
Batiha GE‐S, Al‐Gareeb DAI, Qusti S, et al. Common NLRP3 inflammasome inhibitors and Covid‐19: divide and conquer. Scientific African. 2021;e01084. doi:10.1016/j.sciaf

Auteurs

Wael Y Khawagi (WY)

Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.

Hayder M Al-Kuraishy (HM)

Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.

Nawar R Hussein (NR)

College of Pharmacy, Pharmacology Department, Al-Farahidi University, Baghdad, Iraq.

Ali I Al-Gareeb (AI)

Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.

Esraa Atef (E)

Respiratory Therapy Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia.

Omnya Elhussieny (O)

Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt.

Athanasios Alexiou (A)

University Centre for Research & Development, Chandigarh University Chandigarh-Ludhiana Highway, Mohali, India.
Department of Research and Development, Funogen, Athens, Greece.
Department of Research and Development, AFNP Med, Wien, Austria.
Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia.

Marios Papadakis (M)

Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany.

Majid S Jabir (MS)

Applied Science Department, University of Technology, Baghdad, Iraq.

Abdullah A Alshehri (AA)

Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Egypt.

Hebatallah M Saad (HM)

Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt.

Gaber El-Saber Batiha (GE)

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.

Classifications MeSH