Cancer Prevalence in Children with Inborn Errors of Immunity: Report from a Single Institution.


Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
28 May 2024
Historique:
received: 27 07 2023
accepted: 09 05 2024
medline: 28 5 2024
pubmed: 28 5 2024
entrez: 28 5 2024
Statut: epublish

Résumé

Inborn Errors of Immunity (IEI) comprise several genetic anomalies that affect different components of the innate and adaptive responses, predisposing to infectious diseases, autoimmunity and malignancy. Different studies, mostly in adults, have reported a higher prevalence of cancer in IEI patients. However, in part due to the rarity of most of these IEI subtypes (classified in ten categories by the Primary Immunodeficiency Committee of the International Union of Immunological Societies), it is difficult to assess the risk in a large number of patients, especially during childhood. To document the cancer prevalence in a pediatric cohort from a single referral institution, assessing their risk, together with the type of neoplasia within each IEI subgroup. An extensive review of clinical records from 1989 to 2022 of IEI patients who at some point developed cancer before the age of sixteen. Of a total of 1642 patients with IEI diagnosis, 34 developed cancer before 16 years of age, showing a prevalence (2.1%) significantly higher than that of the general age matched population (0.22). Hematologic neoplasms (mostly lymphomas) were the most frequent malignancies. This study represents one of the few reports focused exclusively in pediatric IEI cases, describing not only the increased risk of developing malignancy compared with the age matched general population (a fact that must be taken into account by immunologists during follow-up) but also the association of the different neoplasms with particular IEI subtypes, thus disclosing the possible mechanisms involved.

Sections du résumé

BACKGROUND BACKGROUND
Inborn Errors of Immunity (IEI) comprise several genetic anomalies that affect different components of the innate and adaptive responses, predisposing to infectious diseases, autoimmunity and malignancy. Different studies, mostly in adults, have reported a higher prevalence of cancer in IEI patients. However, in part due to the rarity of most of these IEI subtypes (classified in ten categories by the Primary Immunodeficiency Committee of the International Union of Immunological Societies), it is difficult to assess the risk in a large number of patients, especially during childhood.
OBJECTIVE OBJECTIVE
To document the cancer prevalence in a pediatric cohort from a single referral institution, assessing their risk, together with the type of neoplasia within each IEI subgroup.
METHOD METHODS
An extensive review of clinical records from 1989 to 2022 of IEI patients who at some point developed cancer before the age of sixteen.
RESULTS RESULTS
Of a total of 1642 patients with IEI diagnosis, 34 developed cancer before 16 years of age, showing a prevalence (2.1%) significantly higher than that of the general age matched population (0.22). Hematologic neoplasms (mostly lymphomas) were the most frequent malignancies.
CONCLUSION CONCLUSIONS
This study represents one of the few reports focused exclusively in pediatric IEI cases, describing not only the increased risk of developing malignancy compared with the age matched general population (a fact that must be taken into account by immunologists during follow-up) but also the association of the different neoplasms with particular IEI subtypes, thus disclosing the possible mechanisms involved.

Identifiants

pubmed: 38805138
doi: 10.1007/s10875-024-01736-3
pii: 10.1007/s10875-024-01736-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

138

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical. J Clin Immunol. 2020;40(1):66–81.
doi: 10.1007/s10875-020-00758-x pubmed: 32048120 pmcid: 7082388
Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;40:24–64.
doi: 10.1007/s10875-019-00737-x
Mayor P, Eng K, Singel K, Abrams S, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States immune deficiency network registry. J Allergy Clin Immunol. 2018;141(3):1028–35.
doi: 10.1016/j.jaci.2017.05.024 pubmed: 28606585
Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014;197(5).
Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, et al. Cancers related to immunodeficiencies: update and perspectives. Front Immunol. 2016;7:365.
doi: 10.3389/fimmu.2016.00365 pubmed: 27703456 pmcid: 5028721
Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol. 2016;130:25–74.
pubmed: 26922999 pmcid: 6087548
Majhail NS. Secondary cancers following allogeneic hematopoietic cell transplantation in adults. Br J Haematol. 2011;154:301–10.
doi: 10.1111/j.1365-2141.2011.08756.x pubmed: 21615719
Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555:321–7.
doi: 10.1038/nature25480 pubmed: 29489754
Schutte P, Moricke A, Zimmermann M, Bleckmann K, Reismuller B, Attarbaschi A, et al. Preexisting conditions in pediatric ALL patients: spectrum, frequency and clinical impact. Eur J Med Genet. 2016;59(3):143–51.
doi: 10.1016/j.ejmg.2015.12.008 pubmed: 26732628
Zhang J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373:2336–46.
doi: 10.1056/NEJMoa1508054 pubmed: 26580448 pmcid: 4734119
Kratz CP, Stanulla M, Cavé H. Genetic predisposition to acute lymphoblastic leukemia: overview on behalf of the I-BFM ALL host genetic variation working group. EJMG. 2016;59:111–5.
Béziat V, Jouanguy E. Human inborn errors of immunity to oncogenic viruses. Curr Opin Immunol. 2021;72:277–85.
doi: 10.1016/j.coi.2021.06.017 pubmed: 34364035 pmcid: 8721657
Kindler O, Quehenberger F, Benesch M, Seidel MG. The iceberg map ofgermline mutations in childhood cancer: Focus on primary immunodeficiencies. Curr Opin Pediatr. 2018;30:855–63.
doi: 10.1097/MOP.0000000000000680 pubmed: 30124581
Jonkman-Berk BM, van den Berg JM, ten Berge IJM, Bredius RGM, Driessen GJ, Dalm VASH, et al. Primary immunodeficiencies in the Netherlands: National patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156:154–62.
doi: 10.1016/j.clim.2014.10.003 pubmed: 25451158
Gathmann B, Mahlaoui N, Gerard L, Oksenhendler E, Warnatz K, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–26.
doi: 10.1016/j.jaci.2013.12.1077 pubmed: 24582312
Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225.
doi: 10.1046/j.1365-2249.2000.01131.x pubmed: 10792368 pmcid: 1905641
Tanyildiz HG, Dincaslan H, Yavuz G, Unal E, Ikinciogullari A, Dogu F, et al. Lymphoma secondary to congenital and acquired immunodeficiency syndromes at a Turkish pediatric oncology center. J Clin Immunol. 2016;36(7):667–76.
doi: 10.1007/s10875-016-0324-z pubmed: 27492260
Seidemann K, Henze G, Beck JD, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000;11(Suppl. 1):141–5.
doi: 10.1093/annonc/11.suppl_1.S141 pubmed: 10707797
Castilla EE, Gómez MA, Lopez-Camelo JS, Paz JE. Frequency of first-cousin marriages from civil marriage certificates in Argentina. Hum Biol. 1991;63(2):203–10.
pubmed: 2019413
Registro Oncopediátrico Hospitalario Argentino (ROHA) 2018 of the Instituto Nacional del Cáncer (INC): https://www.argentina.gob.ar/salud/instituto-nacional-del-cancer/institucional/roha . Accessed 2018.
Sheu MS, Hawryluk EB, Guo D, London WB, Huang JT, et al. Voriconazole phototoxicity in children: a retrospective review. J Am Acad Dermatol. 2015;72(2):214–20.
doi: 10.1016/j.jaad.2014.10.023
Bomken S, Werff Ten Bosch JVD, Attarbaschi A, et al. Current understanding and future research priorities in malignancy associated with inborn errors of immunity and DNA repair disorders: the perspective of an interdisciplinary working group. Front Immunol. 2018;9:2912.
doi: 10.3389/fimmu.2018.02912 pubmed: 30619276 pmcid: 6299915
Duan L, Grunebaum E. Hematological malignancies associated with primary immunodeficiency disorders. Clin Immunol. 2018;194:46–59.
doi: 10.1016/j.clim.2018.06.011 pubmed: 29966714
Vajdic CM, Mao L, van Leeuwen MT, Kirkpatrick P, Grulich AE, Riminton S. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood. 2010;116:1228–34.
doi: 10.1182/blood-2010-03-272351 pubmed: 20466855
Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:13.
doi: 10.1186/1750-1172-7-13 pubmed: 22373003 pmcid: 3314554
https://lasidregistry.org/ , last accessed on February 10
Satgé D. A tumor profile in primary immune deficiencies challenges the cancer immune surveillance concept. Front Immunol. 2018;9:1149.
doi: 10.3389/fimmu.2018.01149 pubmed: 29881389 pmcid: 5976747
Hauck F, Voss R, Urban C, Seidel MG. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol. 2018;141(1):59–68.
doi: 10.1016/j.jaci.2017.06.009 pubmed: 28669558
Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33:202-8.30.
doi: 10.1200/JCO.2014.56.5101 pubmed: 25488969
Fekrvand S, Yazdani R, Abolhassani H, Ghaffari J, Aghamohammadi A. The first purine nucleoside phosphorylase deficiency patient resembling IgA deficiency and a review of the literature. Immunol Invest. 2019;48(4):410–30.
doi: 10.1080/08820139.2019.1570249 pubmed: 30885031
Kiykim A, Simsek I, Kiykim E, et al. Two patients with novel missense mutation in the purine nucleoside phosphorylase gene without serious or recurrent infections. Clin Exp Neuroimmunol. 2016;7(1):79–82.
doi: 10.1111/cen3.12254
Derpoorter C, Bordon V, Laureys G, Haerynck F, Lammens T. Genes at the Crossroad of Primary Immunodeficiencies and Cancer. Front Immunol. 2018;9:2544.
doi: 10.3389/fimmu.2018.02544 pubmed: 30443258 pmcid: 6221943
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet. 2020;139(6–7):885–901. https://doi.org/10.1007/s00439-020-02145-3 .
doi: 10.1007/s00439-020-02145-3 pubmed: 32152698
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: lessons from genetic diseases. Immunol Rev. 2019;291(1):174–89. https://doi.org/10.1111/imr.12791 .
doi: 10.1111/imr.12791 pubmed: 31402499
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. Biology (Basel). 2021;10(4):313.
pubmed: 33918597
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol. 2023;212(2):129–36.
doi: 10.1093/cei/uxac109 pubmed: 36433803
Baleydier F, Bernard F, Ansari M. The possibilities of immunotherapy for children with primary immunodeficiencies associated with cancers. Biomolecules. 2020;10(8):E1112.
doi: 10.3390/biom10081112

Auteurs

María Raquel Mitchell (MR)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina. raquelmitchell@gmail.com.

Luciano Urdinez (L)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Andrea R Bernasconi (AR)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Silvia Danielian (S)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

María Martha Katsikas (MM)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Elisa O Sajaroff (EO)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Georgina Roffé (G)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Nélida M Villa (NM)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Laura Galluzzo (L)

Servicio de Anatomía Patológica, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Marianela Sanz (M)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Alejandro M Palma (AM)

Departament of Pediatrics - Division of Immunology, IWK Health Centre, Halifax, Nova Scotia, Canada.

Carolina Bouso (C)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Emma Prieto (E)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Verónica Goris (V)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Judith Yancoski (J)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Sergio D Rosenzweig (SD)

Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA.

Matías Oleastro (M)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Adriana Rosé (A)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Walter Cacciavillano (W)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Guido Felizzia (G)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Myriam Guitter (M)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Cristian Sánchez La Rosa (C)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Mailén Ríos (M)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Pedro Zubizarreta (P)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

María Sara Felice (MS)

Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Jorge G Rossi (JG)

Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH