SARS-CoV-2 detection in pediatric dental clinic wastewater reflects the number of local COVID-19 cases in children under 10 years old.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 May 2024
28 May 2024
Historique:
received:
08
12
2023
accepted:
23
05
2024
medline:
29
5
2024
pubmed:
29
5
2024
entrez:
28
5
2024
Statut:
epublish
Résumé
This was the first longitudinal study to analyze dental clinic wastewater to estimate asymptomatic SARS-CoV-2 infection trends in children. We monitored wastewater over a 14-month period, spanning three major COVID-19 waves driven by the Alpha, Delta, and Omicron variants. Each Saturday, wastewater was sampled at the Pediatric Dental Clinic of the only dental hospital in Japan's Saitama Prefecture. The relationship between the weekly number of cases in Saitama Prefecture among residents aged < 10 years (exposure) and wastewater SARS-CoV-2 RNA detection (outcome) was examined. The number of cases was significantly associated with wastewater SARS-CoV-2 RNA positivity (risk ratio, 5.36; 95% confidence interval, 1.72-16.67; Fisher's exact test, p = 0.0005). A sample from Week 8 of 2022 harbored the Omicron variant. Compared to sporadic individual testing, this approach allows continuous population-level surveillance, which is less affected by healthcare seeking and test availability. Since wastewater from pediatric dental clinics originates from the oral cavities of asymptomatic children, such testing can provide important information regarding asymptomatic COVID-19 in children, complementing clinical pediatric data.
Identifiants
pubmed: 38806581
doi: 10.1038/s41598-024-63020-z
pii: 10.1038/s41598-024-63020-z
doi:
Substances chimiques
Wastewater
0
RNA, Viral
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12187Subventions
Organisme : Nihon University
ID : Research Grant for 2022
Organisme : Japan Society for the Promotion of Science
ID : 22H03229
Informations de copyright
© 2024. The Author(s).
Références
Centers for Disease Control and Prevention. Pediatric Data, < https://covid.cdc.gov/covid-data-tracker/#pediatric-data > (2023).
Woodruff, R. C. et al. Risk factors for severe COVID-19 in children. Pediatrics https://doi.org/10.1542/peds.2021-053418 (2022).
doi: 10.1542/peds.2021-053418
pubmed: 34935038
Godfred-Cato, S. et al. Multisystem inflammatory syndrome in infants <12 months of age, United States, May 2020-January 2021. Pediatr. Infect. Dis. J. 40, 601–605. https://doi.org/10.1097/INF.0000000000003149 (2021).
doi: 10.1097/INF.0000000000003149
pubmed: 33872279
pmcid: 8408805
Prime Minister's office of Japan. Press Conference by the Prime Minister regarding the Discussion toward Reclassifying COVID-19 as a Class V Infectious Disease, < https://japan.kantei.go.jp/101_kishida/statement/202301/_00008.html > (2023).
Bivins, A. et al. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environ. Sci. Technol. 54, 7754–7757. https://doi.org/10.1021/acs.est.0c02388 (2020).
doi: 10.1021/acs.est.0c02388
pubmed: 32530639
Miyazawa, S. et al. Wastewater-based reproduction numbers and projections of COVID-19 cases in three areas in Japan, November 2021 to December 2022. Euro. Surveill. https://doi.org/10.2807/1560-7917.ES.2024.29.8.2300277 (2024).
doi: 10.2807/1560-7917.ES.2024.29.8.2300277
pubmed: 38390648
pmcid: 10899819
Kagami, K., Kitajima, M., Takahashi, H., Teshima, T. & Ishiguro, N. Association of wastewater SARS-CoV-2 load with confirmed COVID-19 cases at a university hospital in Sapporo, Japan during the period from February 2021 to February 2023. Sci. Total Environ. 899, 165457. https://doi.org/10.1016/j.scitotenv.2023.165457 (2023).
doi: 10.1016/j.scitotenv.2023.165457
pubmed: 37499823
Ando, H. et al. Wastewater-based prediction of COVID-19 cases using a highly sensitive SARS-CoV-2 RNA detection method combined with mathematical modeling. Environ. Int. 173, 107743. https://doi.org/10.1016/j.envint.2023.107743 (2023).
doi: 10.1016/j.envint.2023.107743
pubmed: 36867995
pmcid: 9824953
Tanimoto, Y. et al. SARS-CoV-2 RNA in wastewater was highly correlated with the number of COVID-19 cases during the fourth and fifth pandemic wave in Kobe City, Japan. Front. Microbiol. 13, 892447. https://doi.org/10.3389/fmicb.2022.892447 (2022).
doi: 10.3389/fmicb.2022.892447
pubmed: 35756040
pmcid: 9223763
Hata, A., Hara-Yamamura, H., Meuchi, Y., Imai, S. & Honda, R. Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Sci. Total Environ. 758, 143578. https://doi.org/10.1016/j.scitotenv.2020.143578 (2021).
doi: 10.1016/j.scitotenv.2020.143578
pubmed: 33221007
To, K. K. et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 71, 841–843. https://doi.org/10.1093/cid/ciaa149 (2020).
doi: 10.1093/cid/ciaa149
pubmed: 32047895
Castro-Gutierrez, V. et al. Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS One 17, e0270168. https://doi.org/10.1371/journal.pone.0270168 (2022).
doi: 10.1371/journal.pone.0270168
pubmed: 35714109
pmcid: 9205509
Wolken, M. et al. Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. Water Res. 231, 119648. https://doi.org/10.1016/j.watres.2023.119648 (2023).
doi: 10.1016/j.watres.2023.119648
pubmed: 36702023
pmcid: 9858235
Conway, D. I. et al. SARS-CoV-2 positivity in asymptomatic-screened dental patients. J. Dent. Res. 100, 583–590. https://doi.org/10.1177/00220345211004849 (2021).
doi: 10.1177/00220345211004849
pubmed: 33779355
Li, X. et al. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. J. Hazard Mater. 441, 129848. https://doi.org/10.1016/j.jhazmat.2022.129848 (2023).
doi: 10.1016/j.jhazmat.2022.129848
pubmed: 36067562
COVID-19 Taskforce. Manual for detection of SARS-CoV-2 RNA in wastewater, <chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://www.jswe.or.jp/aboutus/pdf/Manual-for-Detection-of-SARS-CoV-2-RNA-in-Wastewater.pdf > (2022).
Centers for Disease Control and Prevention (CDC). 2019-novel coronavirus (2019-nCoV) real-time rRT-PCR panel primers and probes, < https://stacks.cdc.gov/view/cdc/84525/cdc_84525_DS1.pdf > (2020).
Otani, K. T., Ko, Y., Yamauchi, Y., Suzuki, M. Epidemiological study of gender and age characteristics for each epidemic wave of novel coronavirus infection in Japan. Report No. 514, 271–272 (National Institute of infectious diseases, Tokyo, 2022).
Tsuyoshi Sekizuka, K. I., Yatsu, K., Tanaka, R., Eto, S., Someno, R., Hashino, M., Kuroda, M., COVID-19 Genome Surveillance Group. Molecular epidemiological survey using novel coronavirus SARS-CoV-2 genome information (as of January 14, 2021). Report No. 493, 13–14 (National Instiyute of Infectious Diseases, Tokyo, 2021).
National Institute of Infectious Diseases. About the new coronavirus (as of December 16, 2021), < https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/10840-covid19-64.html > (2021).
Chiwandire, N. et al. Changing epidemiology of COVID-19 in children and adolescents over four successive epidemic waves in South Africa, 2020–2022. J. Pediatric. Infect. Dis. Soc. 12, 128–134. https://doi.org/10.1093/jpids/piad002 (2023).
doi: 10.1093/jpids/piad002
pubmed: 36648247
pmcid: 10112681
Hamid, S. et al. COVID-19-associated hospitalizations among U.S. infants aged <6 months - COVID-NET, 13 states, June 2021-August 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 1442–1448. https://doi.org/10.1558/mmwr.mm7145a3 (2022).
Chun, J. Y., Jeong, H. & Kim, Y. Identifying susceptibility of children and adolescents to the Omicron variant (B.1.1.529). BMC Med. 20, 451. https://doi.org/10.1186/s12916-022-02655-z (2022).
doi: 10.1186/s12916-022-02655-z
pubmed: 36419108
pmcid: 9684890
Wu, Y. et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: A systematic review and meta-analysis. JAMA Netw. Open 5, e2228008. https://doi.org/10.1001/jamanetworkopen.2022.28008 (2022).
doi: 10.1001/jamanetworkopen.2022.28008
pubmed: 35994285
pmcid: 9396366
Boucau, J. et al. Duration of shedding of culturable virus in SARS-CoV-2 Omicron (BA.1) infection. N. Engl. J. Med. 387, 275–277. https://doi.org/10.1056/NEJMc2202092 (2022).
doi: 10.1056/NEJMc2202092
pubmed: 35767428
Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107. https://doi.org/10.1016/S1473-3099(21)00703-9 (2022).
doi: 10.1016/S1473-3099(21)00703-9
pubmed: 34951953
Dehbandi, R. & Zazouli, M. A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1, e145. https://doi.org/10.1016/S2666-5247(20)30093-8 (2020).
doi: 10.1016/S2666-5247(20)30093-8
pubmed: 33521711
pmcid: 7833680
Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X. & Charrel, R. N. Heat inactivation of different types of SARS-CoV-2 samples: What protocols for biosafety, molecular detection and serological diagnostics?. Viruses https://doi.org/10.3390/v12070735 (2020).
doi: 10.3390/v12070735
pubmed: 32646015
pmcid: 7412566
IDEXX laboratories. Sample Concentration Protocol for Wastewater Surveillance for SARS-CoV-2, < https://www.idexx.com/files/example-concentration-protocol-for-wastewater-surveillance-PEG.pdf > (2020).
Emery, S. L. et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis. 10, 311–316. https://doi.org/10.3201/eid1002.030759 (2004).
doi: 10.3201/eid1002.030759
pubmed: 15030703
pmcid: 3322901
Haramoto, E. et al. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 135, 168–186. https://doi.org/10.1016/j.watres.2018.02.004 (2018).
doi: 10.1016/j.watres.2018.02.004
pubmed: 29471200
Alamin, M., Tsuji, S., Hata, A., Hara-Yamamura, H. & Honda, R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. Sci. Total. Environ. 823, 153737. https://doi.org/10.1016/j.scitotenv.2022.153737 (2022).
doi: 10.1016/j.scitotenv.2022.153737
pubmed: 35149069
pmcid: 8824713
Saitama Prefecture. Status of new coronavirus infections in Saitama Prefecture, < https://www.pref.saitama.lg.jp/a0701/covid19/jokyo.html > (2023).
Saitama Prefecture. Statistics in Saitama Prefecture, < https://www.pref.saitama.lg.jp/a0206/a009/r03age.html > (2023).
Nahm, F. S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 75, 25–36. https://doi.org/10.4097/kja.21209 (2022).
doi: 10.4097/kja.21209
pubmed: 35124947
pmcid: 8831439
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36. https://doi.org/10.1148/radiology.143.1.7063747 (1982).
doi: 10.1148/radiology.143.1.7063747
pubmed: 7063747
Fisher, R. A. On the Interpretation of χ2 from contingency tables, and the calculation of P. J. Royal Stat. Soc. 85, 87–94 (1922).
doi: 10.2307/2340521
Nagata, Y. How to determine sample size. Vol. 1 (Asakura Bookstore, 2003).