SARS-CoV-2 detection in pediatric dental clinic wastewater reflects the number of local COVID-19 cases in children under 10 years old.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 May 2024
Historique:
received: 08 12 2023
accepted: 23 05 2024
medline: 29 5 2024
pubmed: 29 5 2024
entrez: 28 5 2024
Statut: epublish

Résumé

This was the first longitudinal study to analyze dental clinic wastewater to estimate asymptomatic SARS-CoV-2 infection trends in children. We monitored wastewater over a 14-month period, spanning three major COVID-19 waves driven by the Alpha, Delta, and Omicron variants. Each Saturday, wastewater was sampled at the Pediatric Dental Clinic of the only dental hospital in Japan's Saitama Prefecture. The relationship between the weekly number of cases in Saitama Prefecture among residents aged < 10 years (exposure) and wastewater SARS-CoV-2 RNA detection (outcome) was examined. The number of cases was significantly associated with wastewater SARS-CoV-2 RNA positivity (risk ratio, 5.36; 95% confidence interval, 1.72-16.67; Fisher's exact test, p = 0.0005). A sample from Week 8 of 2022 harbored the Omicron variant. Compared to sporadic individual testing, this approach allows continuous population-level surveillance, which is less affected by healthcare seeking and test availability. Since wastewater from pediatric dental clinics originates from the oral cavities of asymptomatic children, such testing can provide important information regarding asymptomatic COVID-19 in children, complementing clinical pediatric data.

Identifiants

pubmed: 38806581
doi: 10.1038/s41598-024-63020-z
pii: 10.1038/s41598-024-63020-z
doi:

Substances chimiques

Wastewater 0
RNA, Viral 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12187

Subventions

Organisme : Nihon University
ID : Research Grant for 2022
Organisme : Japan Society for the Promotion of Science
ID : 22H03229

Informations de copyright

© 2024. The Author(s).

Références

Centers for Disease Control and Prevention. Pediatric Data, < https://covid.cdc.gov/covid-data-tracker/#pediatric-data > (2023).
Woodruff, R. C. et al. Risk factors for severe COVID-19 in children. Pediatrics https://doi.org/10.1542/peds.2021-053418 (2022).
doi: 10.1542/peds.2021-053418 pubmed: 34935038
Godfred-Cato, S. et al. Multisystem inflammatory syndrome in infants <12 months of age, United States, May 2020-January 2021. Pediatr. Infect. Dis. J. 40, 601–605. https://doi.org/10.1097/INF.0000000000003149 (2021).
doi: 10.1097/INF.0000000000003149 pubmed: 33872279 pmcid: 8408805
Prime Minister's office of Japan. Press Conference by the Prime Minister regarding the Discussion toward Reclassifying COVID-19 as a Class V Infectious Disease, < https://japan.kantei.go.jp/101_kishida/statement/202301/_00008.html > (2023).
Bivins, A. et al. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environ. Sci. Technol. 54, 7754–7757. https://doi.org/10.1021/acs.est.0c02388 (2020).
doi: 10.1021/acs.est.0c02388 pubmed: 32530639
Miyazawa, S. et al. Wastewater-based reproduction numbers and projections of COVID-19 cases in three areas in Japan, November 2021 to December 2022. Euro. Surveill. https://doi.org/10.2807/1560-7917.ES.2024.29.8.2300277 (2024).
doi: 10.2807/1560-7917.ES.2024.29.8.2300277 pubmed: 38390648 pmcid: 10899819
Kagami, K., Kitajima, M., Takahashi, H., Teshima, T. & Ishiguro, N. Association of wastewater SARS-CoV-2 load with confirmed COVID-19 cases at a university hospital in Sapporo, Japan during the period from February 2021 to February 2023. Sci. Total Environ. 899, 165457. https://doi.org/10.1016/j.scitotenv.2023.165457 (2023).
doi: 10.1016/j.scitotenv.2023.165457 pubmed: 37499823
Ando, H. et al. Wastewater-based prediction of COVID-19 cases using a highly sensitive SARS-CoV-2 RNA detection method combined with mathematical modeling. Environ. Int. 173, 107743. https://doi.org/10.1016/j.envint.2023.107743 (2023).
doi: 10.1016/j.envint.2023.107743 pubmed: 36867995 pmcid: 9824953
Tanimoto, Y. et al. SARS-CoV-2 RNA in wastewater was highly correlated with the number of COVID-19 cases during the fourth and fifth pandemic wave in Kobe City, Japan. Front. Microbiol. 13, 892447. https://doi.org/10.3389/fmicb.2022.892447 (2022).
doi: 10.3389/fmicb.2022.892447 pubmed: 35756040 pmcid: 9223763
Hata, A., Hara-Yamamura, H., Meuchi, Y., Imai, S. & Honda, R. Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Sci. Total Environ. 758, 143578. https://doi.org/10.1016/j.scitotenv.2020.143578 (2021).
doi: 10.1016/j.scitotenv.2020.143578 pubmed: 33221007
To, K. K. et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 71, 841–843. https://doi.org/10.1093/cid/ciaa149 (2020).
doi: 10.1093/cid/ciaa149 pubmed: 32047895
Castro-Gutierrez, V. et al. Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS One 17, e0270168. https://doi.org/10.1371/journal.pone.0270168 (2022).
doi: 10.1371/journal.pone.0270168 pubmed: 35714109 pmcid: 9205509
Wolken, M. et al. Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. Water Res. 231, 119648. https://doi.org/10.1016/j.watres.2023.119648 (2023).
doi: 10.1016/j.watres.2023.119648 pubmed: 36702023 pmcid: 9858235
Conway, D. I. et al. SARS-CoV-2 positivity in asymptomatic-screened dental patients. J. Dent. Res. 100, 583–590. https://doi.org/10.1177/00220345211004849 (2021).
doi: 10.1177/00220345211004849 pubmed: 33779355
Li, X. et al. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. J. Hazard Mater. 441, 129848. https://doi.org/10.1016/j.jhazmat.2022.129848 (2023).
doi: 10.1016/j.jhazmat.2022.129848 pubmed: 36067562
COVID-19 Taskforce. Manual for detection of SARS-CoV-2 RNA in wastewater, <chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://www.jswe.or.jp/aboutus/pdf/Manual-for-Detection-of-SARS-CoV-2-RNA-in-Wastewater.pdf > (2022).
Centers for Disease Control and Prevention (CDC). 2019-novel coronavirus (2019-nCoV) real-time rRT-PCR panel primers and probes, < https://stacks.cdc.gov/view/cdc/84525/cdc_84525_DS1.pdf > (2020).
Otani, K. T., Ko, Y., Yamauchi, Y., Suzuki, M. Epidemiological study of gender and age characteristics for each epidemic wave of novel coronavirus infection in Japan. Report No. 514, 271–272 (National Institute of infectious diseases, Tokyo, 2022).
Tsuyoshi Sekizuka, K. I., Yatsu, K., Tanaka, R., Eto, S., Someno, R., Hashino, M., Kuroda, M., COVID-19 Genome Surveillance Group. Molecular epidemiological survey using novel coronavirus SARS-CoV-2 genome information (as of January 14, 2021). Report No. 493, 13–14 (National Instiyute of Infectious Diseases, Tokyo, 2021).
National Institute of Infectious Diseases. About the new coronavirus (as of December 16, 2021), < https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/10840-covid19-64.html > (2021).
Chiwandire, N. et al. Changing epidemiology of COVID-19 in children and adolescents over four successive epidemic waves in South Africa, 2020–2022. J. Pediatric. Infect. Dis. Soc. 12, 128–134. https://doi.org/10.1093/jpids/piad002 (2023).
doi: 10.1093/jpids/piad002 pubmed: 36648247 pmcid: 10112681
Hamid, S. et al. COVID-19-associated hospitalizations among U.S. infants aged <6 months - COVID-NET, 13 states, June 2021-August 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 1442–1448. https://doi.org/10.1558/mmwr.mm7145a3 (2022).
Chun, J. Y., Jeong, H. & Kim, Y. Identifying susceptibility of children and adolescents to the Omicron variant (B.1.1.529). BMC Med. 20, 451. https://doi.org/10.1186/s12916-022-02655-z (2022).
doi: 10.1186/s12916-022-02655-z pubmed: 36419108 pmcid: 9684890
Wu, Y. et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: A systematic review and meta-analysis. JAMA Netw. Open 5, e2228008. https://doi.org/10.1001/jamanetworkopen.2022.28008 (2022).
doi: 10.1001/jamanetworkopen.2022.28008 pubmed: 35994285 pmcid: 9396366
Boucau, J. et al. Duration of shedding of culturable virus in SARS-CoV-2 Omicron (BA.1) infection. N. Engl. J. Med. 387, 275–277. https://doi.org/10.1056/NEJMc2202092 (2022).
doi: 10.1056/NEJMc2202092 pubmed: 35767428
Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107. https://doi.org/10.1016/S1473-3099(21)00703-9 (2022).
doi: 10.1016/S1473-3099(21)00703-9 pubmed: 34951953
Dehbandi, R. & Zazouli, M. A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1, e145. https://doi.org/10.1016/S2666-5247(20)30093-8 (2020).
doi: 10.1016/S2666-5247(20)30093-8 pubmed: 33521711 pmcid: 7833680
Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X. & Charrel, R. N. Heat inactivation of different types of SARS-CoV-2 samples: What protocols for biosafety, molecular detection and serological diagnostics?. Viruses https://doi.org/10.3390/v12070735 (2020).
doi: 10.3390/v12070735 pubmed: 32646015 pmcid: 7412566
IDEXX laboratories. Sample Concentration Protocol for Wastewater Surveillance for SARS-CoV-2, < https://www.idexx.com/files/example-concentration-protocol-for-wastewater-surveillance-PEG.pdf > (2020).
Emery, S. L. et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis. 10, 311–316. https://doi.org/10.3201/eid1002.030759 (2004).
doi: 10.3201/eid1002.030759 pubmed: 15030703 pmcid: 3322901
Haramoto, E. et al. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 135, 168–186. https://doi.org/10.1016/j.watres.2018.02.004 (2018).
doi: 10.1016/j.watres.2018.02.004 pubmed: 29471200
Alamin, M., Tsuji, S., Hata, A., Hara-Yamamura, H. & Honda, R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. Sci. Total. Environ. 823, 153737. https://doi.org/10.1016/j.scitotenv.2022.153737 (2022).
doi: 10.1016/j.scitotenv.2022.153737 pubmed: 35149069 pmcid: 8824713
Saitama Prefecture. Status of new coronavirus infections in Saitama Prefecture, < https://www.pref.saitama.lg.jp/a0701/covid19/jokyo.html > (2023).
Saitama Prefecture. Statistics in Saitama Prefecture, < https://www.pref.saitama.lg.jp/a0206/a009/r03age.html > (2023).
Nahm, F. S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 75, 25–36. https://doi.org/10.4097/kja.21209 (2022).
doi: 10.4097/kja.21209 pubmed: 35124947 pmcid: 8831439
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36. https://doi.org/10.1148/radiology.143.1.7063747 (1982).
doi: 10.1148/radiology.143.1.7063747 pubmed: 7063747
Fisher, R. A. On the Interpretation of χ2 from contingency tables, and the calculation of P. J. Royal Stat. Soc. 85, 87–94 (1922).
doi: 10.2307/2340521
Nagata, Y. How to determine sample size. Vol. 1 (Asakura Bookstore, 2003).

Auteurs

Dai Kanamori (D)

Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.

Jun Sakai (J)

Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, 350-0495, Japan.

Takahiro Iijima (T)

Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.

Yuka Oono (Y)

Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, 350-0283, Japan.

Bikash Malla (B)

Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi, 400-8511, Japan.

Eiji Haramoto (E)

Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi, 400-8511, Japan.

Satoshi Hayakawa (S)

Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.

Shihoko Komine-Aizawa (S)

Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.

Shigefumi Maesaki (S)

Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, 350-0495, Japan.

Thomas Vorup-Jensen (T)

Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.

Paul Evan Kilgore (PE)

Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.

Hikaru Kohase (H)

Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, 350-0283, Japan.

Tomonori Hoshino (T)

Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.

Mitsuko Seki (M)

Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan. mitsuko.seki@dent.meikai.ac.jp.
Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan. mitsuko.seki@dent.meikai.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH