A pioneer nematode effector suppresses plant reactive oxygen species burst by interacting with the class III peroxidase.
Bursaphelenchus xylophilus
Pinus thunbergii
immunity
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
29 May 2024
29 May 2024
Historique:
revised:
02
04
2024
received:
07
12
2023
accepted:
27
04
2024
medline:
29
5
2024
pubmed:
29
5
2024
entrez:
29
5
2024
Statut:
aheadofprint
Résumé
Bursaphelenchus xylophilus is the pathogen of pine wilt disease, which can devastate the pine forest ecosystem. Usually, plant cells generate reactive oxygen species (ROS) as a defensive substance or signalling molecules to resist the infection of nematodes. However, little is known about how B. xylophilus effectors mediate the plant ROS metabolism. Here, we identified a pioneer B. xylophilus Prx3-interacting effector 1 (BxPIE1) expressed in the dorsal gland cells and the intestine. Silencing of the BxPIE1 gene resulted in reduced nematode reproduction and a delay in disease progression during parasitic stages, with the upregulation of pathogenesis-related (PR) genes PtPR-3 (class Ⅳ chitinase) and PtPR-9 (peroxidase). The protein-protein interaction assays further demonstrated that BxPIE1 interacts with a Pinus thunbergii class III peroxidase (PtPrx3), which produces H
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Almagro, L., Gómez Ros, L.V., Belchi‐Navarro, S., Bru, R., Ros Barceló, A. & PEDREÑO, M.A. (2009) Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.
Baker, C.J. & Orlandi, E.W. (1995) Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 33, 299–321.
Basso, M.F., Lourenço‐tessutti, I.T., Mendes, R.A.G., Pinto, C.E.M., Bournaud, C., Gillet, F.X. et al. (2020) MiDaf16‐like and MiSkn1‐like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Scientific Reports, 10, 6991.
Bindschedler, L.V., Dewdney, J., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J. et al. (2006) Peroxidase‐dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 47, 851–863.
de Boer, J.M., Yan, Y., Smant, G., Davis, E.L. & Baum, T.J. (1998) In‐situ hybridization to messenger RNA in Heterodera glycines. Journal of Nematology, 30, 309–312.
Castro, B., Citterico, M., Kimura, S., Stevens, D.M., Wrzaczek, M. & Coaker, G. (2021) Stress‐induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants, 7, 403–412.
Chen, Q. & Peng, D. (2019) Nematode chitin and application. In: Yang, Q. & Fukamizo, T. (Eds.) Targeting chitin‐containing organisms, 1142. Springer, pp. 209–219.
Chen, Y., Liu, Q., Sun, X., Liu, L., Zhao, J., Yang, S. et al. (2023) Meloidogyne enterolobii MeMSP1 effector targets the glutathione‐S‐transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. New Phytologist, 240, 2468–2483.
Choi, H.W., Kim, Y.J., Lee, S.C., Hong, J.K. & Hwang, B.K. (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiology, 145, 890–904.
Daudi, A., Cheng, Z., O'brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M. et al. (2012). The apoplastic oxidative burst peroxidase in arabidopsis is a major component of pattern‐triggered immunity. Plant Cell, 24, 275–287.
Ding, X., Ye, J., Wu, X., Huang, L., Zhu, L. & Lin, S. (2015) Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease. Gene, 555, 346–356.
Ding, X., Zhao, R., Dai, Y., Zhang, Y., Lin, S. & Ye, J. (2022) Comprehensive analysis of copy number variations on Glycoside Hydrolase 45 genes among different Bursaphelenchus xylophilus strains. International Journal of Molecular Sciences, 23, 15323.
Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A. & Mohanty, A. et al. (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathogens, 5, e1000290.
Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F. et al. (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. The Plant Journal, 56, 181–195.
Futai, K. (2013) Pine wood nematode, Bursaphelenchus xylophilus. Annual Review of Phytopathology, 51, 61–83.
Habash, S.S., Sobczak, M., Siddique, S., Voigt, B., Elashry, A. & Grundler, F.M.W. (2017) Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Scientific Reports, 7, 13536.
He, L., Wu, X., Yu, L., Ji, J. & Ye, J. (2010) The diference of H2O2 and oxidative enzyme in the interaction of diferent resistance pines and Bursaphelenchus xylophilus. Journal of Nanjing Forestry University, 34, 13–17.
Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M. & Doehlemann, G. (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogens, 8, e1002684.
Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. & Matsui, H. (2001) A large family of class III plant peroxidases. Plant and Cell Physiology, 42, 462–468.
Hirao, T., Fukatsu, E. & Watanabe, A. (2012) Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC Plant Biology, 12, 13.
Hu, L., Wu, X., Li, H., Wang, Y., Huang, X., Wang, Y. et al. (2020). BxCDP1 from the pine wood nematode Bursaphelenchus xylophilus is recognized as a novel molecular pattern. Molecular Plant Pathology, 21, 923–935.
Hu, L.J., Wu, X.Q., Ding, X.L. & Ye, J.R. (2021) Comparative transcriptomic analysis of candidate effectors to explore the infection and survival strategy of Bursaphelenchus xylophilus during different interaction stages with pine trees. BMC Plant Biology, 21, 224.
Hu, L.J., Wu, X.Q., Wen, T.Y., Ye, J.R., Qiu, Y.J., Rui, L. et al. (2022) The key molecular pattern BxCDP1 of Bursaphelenchus xylophilus induces plant immunity and enhances plant defense response via two small peptide regions. Frontiers in Plant Science, 13, 937473.
Jha, S. & Modi, H.A. (2018) Statistical optimization of chitinase production by Streptomyces rubiginosus SP24 and efficacy of purified chitinase to control root‐knot nematode infection in Vigna radiata under controlled conditions. Chemical and Biological Technologies in Agriculture, 5, 20.
Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
Kidwai, M., Ahmad, I.Z. & Chakrabarty, D. (2020) Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Reports, 39, 1381–1393.
Kotsaridis, K., Tsakiri, D. & Sarris, P.F. (2023) Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Critical Reviews in Microbiology, 49, 528–542.
Lee, Y.S., Anees, M., Park, Y.S., Kim, S.B., Jung, W.J. & Kim, K.Y. (2014) Purification and properties of a Meloidogyne‐antagonistic chitinase from Lysobacter capsici YS1215. Nematology, 16, 63–72.
Li, M., Li, H., Ding, X., Wang, L., Wang, X. & Chen, F. (2022) The detection of pine wilt disease: a literature review. International Journal of Molecular Sciences, 23, 10797.
Li, Y., Hu, L.J., Wu, X.Q. & Ye, J.R. (2020) A Bursaphelenchus xylophilus effector, Bx‐FAR‐1, suppresses plant defense and affects nematode infection of pine trees. European Journal of Plant Pathology, 157, 637–650.
Li, Y.L., Fan, C.J., Jiang, X.H., Tian, X.Y. & Han, Z.M. (2021) Bursaphelenchus xylophilus: an important pathogenic factor of pine wilt disease and its relationship with Bursaphelenchus mucronatus. Plant Disease, 105, 3055–3062.
Lilley, C.J., Bakhetia, M., Charlton, W.L. & Urwin, P.E. (2007) Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 8, 701–711.
Lilley, C.J., Davies, L.J. & Urwin, P.E. (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology, 139, 630–640.
Lin, B., Zhuo, K., Chen, S., Hu, L., Sun, L., Wang, X. et al. (2016) A novel nematode effector suppresses plant immunity by activating host reactive oxygen species‐scavenging system. New Phytologist, 209, 1159–1173.
Liu, H.B., Rui, L., Feng, Y.Q. & Wu, X.Q. (2019) Molecular characterization and functional analysis of three autophagy genes, BxATG5, BxATG9, and BxATG16, in Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 20, 3769.
Liu, H.B., Rui, L., Feng, Y.Q. & Wu, X.Q. (2020) Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism, promoting infection by Bursaphelenchus xylophilus. Pest Management Science, 76, 2755–2767.
van Loon, L.C., Rep, M. & Pieterse, C.M.J. (2006) Significance of inducible defense‐related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.
Misas Villamil, J.C., Mueller, A.N., Demir, F., Meyer, U., Ökmen, B., Schulze Hüynck, J. et al. (2019) A fungal substrate mimicking molecule suppresses plant immunity via an inter‐kingdom conserved motif. Nature Communications, 10, 1576.
Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O. et al. (2003) NDP kinase 2 interacts with two oxidative stress‐activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 100, 358–363.
Ngou, B.P.M., Jones, J.D.G. & Ding, P. (2022) Plant immune networks. Trends in Plant Science, 27, 255–273.
O'Brien, J. A., Daudi, A., Finch, P., Butt, V. S., Whitelegge, J. P., Souda, P. et al. (2012). A peroxidase‐dependent apoplastic oxidative burst in cultured arabidopsis cells functions in MAMP‐elicited defense. Plant Physiology, 158, 2013–2027.
Qi, T., Guo, J., Liu, P., He, F., Wan, C., Islam, M.A. et al. (2019) Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS‐promoting transcription factor TaLOL2 to defeat ROS‐induced defense in wheat. Molecular Plant, 12, 1624–1638.
Qiu, Y.J., Wu, X.Q., Wen, T.Y., Hu, L.J., Rui, L., Zhang, Y. et al. (2023) The Bursaphelenchus xylophilus candidate effector BxLip‐3 targets the class I chitinases to suppress immunity in pine. Molecular Plant Pathology, 24, 1033–1046.
Rempel, C.B. & Hall, R. (1996) Comparison of disease measures for assessing resistance in canola (Brassica napus) to blackleg (Leptosphaeria maculans). Canadian Journal of Botany, 74, 1930–1936.
dos Santos, C.S.S. & De Vasconcelos, M.W. (2012) Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode. European Journal of Plant Pathology, 132, 407–418.
Shigeto, J. & Tsutsumi, Y. (2016) Diverse functions and reactions of class III peroxidases. New Phytologist, 209, 1395–1402.
Shin, S.‐Y., Kim, I.‐S., Kim, Y.‐S., Lee, H. & Yoon, H.‐S. (2013) Ectopic expression of Brassica rapa L. MDHAR increased tolerance to freezing stress by enhancing antioxidant systems of host plants. South African Journal of Botany, 88, 388–400.
Shinya, R., Morisaka, H., Takeuchi, Y., Futai, K. & Ueda, M. (2013) Making headway in understanding pine wilt disease: what do we perceive in the postgenomic era? Journal of Bioscience and Bioengineering, 116, 1–8.
Siddique, S., Coomer, A., Baum, T. & Williamson, V.M. (2022) Recognition and response in plant‐nematode interactions. Annual Review of Phytopathology, 60, 143–162.
Singh, P., Mishra, V., Tripathi, D.K., Corpas, F.J. & Singh, V.P. (2022) RIPK: a crucial ROS signaling component in plants. Trends in Plant Science, 27, 214–216.
Tanaka, S., Brefort, T., Neidig, N., Djamei, A., Kahnt, J., Vermerris, W. et al. (2014) A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife, 3, e01355.
Toruno, T.Y., Stergiopoulos, I. & Coaker, G. (2016) Plant‐pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology, 54, 419–441.
Tsyglakova, M., Mcdaniel, D. & Hodes, G.E. (2019) Immune mechanisms of stress susceptibility and resilience: lessons from animal models. Frontiers in Neuroendocrinology, 54, 100771.
Vicente, C.S.L., Ikuyo, Y., Shinya, R., Mota, M. & Hasegawa, K. (2015) Catalases induction in high virulence pinewood nematode Bursaphelenchus xylophilus under hydrogen peroxide‐induced stress. PLoS One, 10, e0123839.
Vieira, P. & Gleason, C. (2019) Plant‐parasitic nematode effectors ‐ insights into their diversity and new tools for their identification. Current Opinion in Plant Biology, 50, 37–43.
Waszczak, C., Carmody, M. & Kangasjärvi, J. (2018) Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209–236.
Wen, T.Y., Wu, X.Q., Hu, L.J., Qiu, Y.J., Rui, L., Zhang, Y. et al. (2021) A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene‐forming enzyme in pine. Molecular Plant Pathology, 22, 1399–1412.
Wen, T.Y., Wu, X.Q., Ye, J.R., Qiu, Y.J., Rui, L. & Zhang, Y. (2022) A Bursaphelenchus xylophilus pathogenic protein Bx‐FAR‐1, as potential control target, mediates the jasmonic acid pathway in pines. Pest Management Science, 78, 1870–1880.
Wen, T.Y., Wu, X.Q., Ye, J.R., Qiu, Y.J., Rui, L. & Zhang, Y. (2023) Two novel Bursaphelenchus xylophilus Kunitz effector proteins using different infection and survival strategies to suppress immunity in pine. Phytopathology, 113, 539–548.
Ye, J. (2019) Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures. Scientia Silvae Sinicae, 55, 1–10.
Ye, J. & Wu, X. (2022) Research progress of pine wilt disease. Forest Pest and Disease, 41, 1–10.
Yu, L.Z., Wu, X.Q., Ye, J.R., Zhang, S.N. & Wang, C. (2012) NOS‐like‐mediated nitric oxide is involved in Pinus thunbergii response to the invasion of Bursaphelenchus xylophilus. Plant Cell Reports, 31, 1813–1821.
Yu, T., Jia, Z., Dayananda, B., Li, J., Guo, X., Shi, L. et al. (2022) Analysis of the chloroplast genomes of four Pinus species in Northeast China: insights into hybrid speciation and identification of DNA molecular markers. Journal of Forestry Research, 33, 1881–1890.
Yu, X., Feng, B.M., He, P. & Shan, L.B. (2017) From chaos to harmony: responses and signaling upon microbial pattern recognitionIn: Annual Review of Phytopathology, 55, 109–137.
Zhang, Y., Wen, T.Y., Wu, X.Q., Hu, L.J., Qiu, Y.J. & Rui, L. (2022) The Bursaphelenchus xylophilus effector BxML1 targets the cyclophilin protein (CyP) to promote parasitism and virulence in pine. BMC Plant Biology, 22, 216.