Influence of nitrate supplementation on motor unit activity during recovery following a sustained ischemic contraction in recreationally active young males.
Beetroot juice
Electromyography
Motor unit
Nitric oxide
Recovery
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
29 May 2024
29 May 2024
Historique:
received:
15
08
2023
accepted:
21
05
2024
medline:
29
5
2024
pubmed:
29
5
2024
entrez:
29
5
2024
Statut:
aheadofprint
Résumé
Dietary nitrate (NO In a randomized, double-blinded, cross-over design, 14 males (mean ± SD, 25 ± 6 years) completed two trials following 5 days of supplementation with NO The change in MUP area and MUFR, did not differ between conditions (all p > 0.05), but NIT elicited a reduction in MUP recovery time during brief isometric contractions (p < 0.001), and during recoveries with (p = 0.002) and without (p = 0.012) BFR. These novel observations improve understanding of the effects of NO The study was registered on clinicaltrials.gov with ID of NCT05993715 on August 08, 2023.
Identifiants
pubmed: 38809323
doi: 10.1007/s00394-024-03440-9
pii: 10.1007/s00394-024-03440-9
doi:
Banques de données
ClinicalTrials.gov
['NCT05993715']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167. https://doi.org/10.1038/nrd2466
doi: 10.1038/nrd2466
pubmed: 18167491
Jones AM, Thompson C, Wylie LJ, Vanhatalo A (2018) Dietary nitrate and physical performance. Annu Rev Nutr 38:303–328. https://doi.org/10.1146/annurev-nutr-082117-051622
doi: 10.1146/annurev-nutr-082117-051622
pubmed: 30130468
Richards JC, Racine ML, Hearon CM, Kunkel M, Luckasen GJ, Larson DG, Allen JD, Dinenno FA (2018) Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiol Rep 6:1–12. https://doi.org/10.14814/phy2.13572
doi: 10.14814/phy2.13572
Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM (2011) Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol 589(22):5517–5528. https://doi.org/10.1113/jphysiol.2011.216341
doi: 10.1113/jphysiol.2011.216341
pubmed: 21911616
pmcid: 3240888
Engan HK, Jones AM, Ehrenberg F, Schagatay E (2012) Acute dietary nitrate supplementation improves dry static apnea performance. Respir Physiol Neurobiol 182(2):53–59. https://doi.org/10.1016/j.resp.2012.05.007
doi: 10.1016/j.resp.2012.05.007
pubmed: 22588047
Haider G, Folland JP (2014) Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc 46(12):2234–2243. https://doi.org/10.1249/MSS.0000000000000351
doi: 10.1249/MSS.0000000000000351
pubmed: 24681572
Hoon MW, Fornusek C, Chapman PG, Johnson NA (2015) The effect of nitrate supplementation on muscle contraction in healthy adults. Eur J Sport Sci 15:712–719. https://doi.org/10.1080/17461391.2015.1053418
doi: 10.1080/17461391.2015.1053418
pubmed: 26681629
Whitfield J, Gamu D, Heigenhauser GJF, Van Loon LJC, Spriet LL, Tupling AR, Holloway GP (2017) Beetroot juice increases human muscle force without changing Ca2+-handling proteins. Med Sci Sports Exerc 49(10):2016–2024. https://doi.org/10.1249/MSS.0000000000001321
doi: 10.1249/MSS.0000000000001321
pubmed: 28509762
Tillin NA, Moudy S, Nourse KM, Tyler CJ (2018) Nitrate supplement benefits contractile forces in fatigued but not unfatigued muscle. Med Sci Sports Exerc 50(10):2122–2131. https://doi.org/10.1249/MSS.0000000000001655
doi: 10.1249/MSS.0000000000001655
pubmed: 29727405
Flanagan SD, Looney DP, Miller MJ, DuPont WH, Pryor L, Creighton BC, Sterczala AJ, Szivak TK, Hooper DR, Maresh CM, Volek JS (2016) The effects of nitrate-rich supplementation on neuromuscular efficiency during heavy resistance exercise. J Am Coll Nutr 35(2):100–107
doi: 10.1080/07315724.2015.1081572
pubmed: 26885762
Esen O, Faisal A, Zambolin F, Bailey SJ, Callaghan MJ (2022) Effect of nitrate supplementation on skeletal muscle motor unit activity during isometric blood flow restriction exercise. Eur J Appl Physiol 122(7):1683–1693. https://doi.org/10.1007/s00421-022-04946-y
doi: 10.1007/s00421-022-04946-y
pubmed: 35460359
pmcid: 9197866
Nickels TJ, Reed GW, Drummond JT, Blevins DE, Lutz MC, Wilson DF (2007) Does nitric oxide modulate transmitter release at the mammalian neuromuscular junction? Clin Exp Pharmacol Physiol 34(4):318–326
doi: 10.1111/j.1440-1681.2007.04562.x
pubmed: 17324144
Zhu H, Bhattacharyya B, Lin H, Gomez CM (2013) Skeletal muscle calpain acts through nitric oxide and neural miRNAs to regulate acetylcholine release in motor nerve terminals. J Neurosci 33(17):7308–7324
doi: 10.1523/JNEUROSCI.0224-13.2013
pubmed: 23616539
pmcid: 3753772
Robinson SW, Bourgognon JM, Spiers JG, Breda C, Campesan S, Butcher A, Mallucci GR, Dinsdale D, Morone N, Mistry R, Smith TM, Guerra-Martin M, Challiss RAJ, Giorgini F, Steinert JR (2018) Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol 16(4):2003611
doi: 10.1371/journal.pbio.2003611
Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479. https://doi.org/10.1074/jbc.R113.460261
doi: 10.1074/jbc.R113.460261
pubmed: 23861393
pmcid: 3772194
Clifford T, Bell O, West DJ, Howatson G, Stevenson EJ (2016) The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol 116:353–362. https://doi.org/10.1007/s00421-015-3290-x
doi: 10.1007/s00421-015-3290-x
pubmed: 26537365
Clifford T, Berntzen B, Davison GW, West DJ, Howatson G, Stevenson EJ (2016) Effects of beetroot juice on recovery of muscle function and performance between bouts of repeated sprint exercise. Nutrients 8(8):506. https://doi.org/10.3390/nu8080506
doi: 10.3390/nu8080506
pubmed: 27548212
pmcid: 4997419
Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J (2014) Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. J Appl Physiol 117(12):1460–1470. https://doi.org/10.1152/japplphysiol.00096.2014
doi: 10.1152/japplphysiol.00096.2014
pubmed: 25301896
pmcid: 4269683
Thomas K, Goodall S, Howatson G (2018) Performance fatigability is not regulated to a peripheral critical threshold. Exerc Sport Sci Rev 46(4):240–246. https://doi.org/10.1249/JES.0000000000000162
doi: 10.1249/JES.0000000000000162
pubmed: 30001270
Petrov KA, Malomouzh AI, Kovyazina IV, Krejci E, Nikitashina AD, Proskurina SE, Zobov VV, Nikolsky EE (2013) Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-D-aspartate receptor activation. Eur J Neurosc 37(2):181–189. https://doi.org/10.1111/ejn.12029
doi: 10.1111/ejn.12029
Bigland-Ritchie BR, Dawson NJ, Johansson RS, Lippold OC (1986) Reflex origin for the slowing of motoneurone firing rates in fatigue. J Physiol 379(1):451–459
doi: 10.1113/jphysiol.1986.sp016263
pubmed: 3560001
pmcid: 1182907
Chin ER, Balnave CD, Allen DG (1997) Role of intracellular calcium and metabolites in low-frequency fatigue of mouse skeletal muscle. Am J Physiol Cell Physiol 272(2):C550–C559
doi: 10.1152/ajpcell.1997.272.2.C550
Binder-Macleod SA, Russ DW (1999) Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle. J Appl Physiol 86(4):1337–1346
doi: 10.1152/jappl.1999.86.4.1337
pubmed: 10194220
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A (2019) The relationship between blood flow and motor unit firing rates in response to fatiguing exercise post-stroke. Front Physiol 10:545. https://doi.org/10.3389/fphys.2019.00545
doi: 10.3389/fphys.2019.00545
pubmed: 31133877
pmcid: 6524339
Le Roux-Mallouf T, Laurent J, Besset D, Marillier M, Larribaut J, Belaidi E, Corne C, Doutreleau S, Verges S (2019) Effects of acute nitric oxide precursor intake on peripheral and central fatigue during knee extensions in healthy men. Exp Physiol 104(7):1100–1114. https://doi.org/10.1113/EP087493
doi: 10.1113/EP087493
pubmed: 31004378
Husmann F, Bruhn S, Mittlmeier T, Zschorlich V, Behrens M (2019) Dietary nitrate supplementation improves exercise tolerance by reducing muscle fatigue and perceptual responses. Front Physiol 10:404. https://doi.org/10.3389/fphys.2019.00404
doi: 10.3389/fphys.2019.00404
pubmed: 31068827
pmcid: 6491676
Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, Jeukendrup AE, Vanhatalo A, Jones AM (2013) Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol 115(3):325–336. https://doi.org/10.1152/japplphysiol.00372.2013
doi: 10.1152/japplphysiol.00372.2013
pubmed: 23640589
Piasecki M, Ireland A, Jones DA, McPhee JS (2016) Age-dependent motor unit remodelling in human limb muscles. Biogerontology 17:485–496. https://doi.org/10.1007/s10522-015-9627-3
doi: 10.1007/s10522-015-9627-3
pubmed: 26667009
PiaseckiM Garnés-Camarena O, Stashuk DW (2021) Near-fiber electromyography. Clin Neurophysiol 132(5):1089–1104. https://doi.org/10.1016/j.clinph.2021.02.008
doi: 10.1016/j.clinph.2021.02.008
pubmed: 33774377
Doherty TJ, Stashuk DW (2003) Decomposition-based quantitative electromyography: methods and initial normative data in five muscles. Muscle Nerve 28(2):204–211. https://doi.org/10.1002/mus.10427
doi: 10.1002/mus.10427
pubmed: 12872325
Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Gilchrist M, Benjamin N, Jones AM (2011) Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol 110(3):591–600
doi: 10.1152/japplphysiol.01070.2010
pubmed: 21071588
Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, Gonzalez JT, Jones AM, Jonvik KL, Larsen FJ, Peeling P, Piknova B, Siervo M, Vanhatalo A, McGawley K, Porcelli S (2022) Dietary inorganic nitrate as an ergogenic aid: an expert consensus derived via the modified Delphi technique. Sports Med 52(10):2537–2558. https://doi.org/10.1007/s40279-022-01701-3
doi: 10.1007/s40279-022-01701-3
pubmed: 35604567
pmcid: 9474378
Jones DA, Turner DL, McIntyre DB, Newham DJ (2009) Energy turnover in relation to slowing of contractile properties during fatiguing contractions of the human anterior tibialis muscle. J Physiol 587(17):4329–4338
doi: 10.1113/jphysiol.2009.175265
pubmed: 19596896
pmcid: 2754369
Stashuk DW (1999) Detecting single fiber contributions to motor unit action potentials. Muscle Nerve 22(2):218–229. https://doi.org/10.1002/(sici)1097-4598(199902)22:2%3c218::aid-mus10%3e3.0.co;2-s
doi: 10.1002/(sici)1097-4598(199902)22:2<218::aid-mus10>3.0.co;2-s
pubmed: 10024135
Mullen MJ, Kharbanda RK, Cross J, Donald AE, Taylor M, Vallance P, Deanfield JE, MacAllister RJ (2001) Heterogenous nature of flow-mediated dilatation in human conduit arteries in vivo: relevance to endothelial dysfunction in hypercholesterolemia. Circ Res 88(2):145–151. https://doi.org/10.1161/01.res.88.2.145
doi: 10.1161/01.res.88.2.145
pubmed: 11157665
Piasecki M, Ireland A, Piasecki J, Degens H, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS (2019) Long-term endurance and power training may facilitate motor unit size expansion to compensate for declining motor unit numbers in older age. Front Physiol 10:449. https://doi.org/10.3389/fphys.2019.00449
doi: 10.3389/fphys.2019.00449
pubmed: 31080415
pmcid: 6497749
Beijers RJ, Huysmans SM, van de Bool C, Kingma BR, Verdijk LB, van Loon LJ, Meex SJ, Gosker HR, Schols AM (2018) The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin Nutr 37(6):1852–1861
doi: 10.1016/j.clnu.2017.10.011
pubmed: 29108664
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale
Esen O, Nicholas C, Morris M, Bailey SJ (2019) No effect of beetroot juice supplementation on 100-m and 200-m swimming performance in moderately trained swimmers. Int J Sports Physiol Perform 14(6):706–710
doi: 10.1123/ijspp.2018-0654
pubmed: 30427246
Esen O, Cepicka L, Gabrys T, Karayigit R (2022) High-dose nitrate supplementation attenuates the increased blood pressure responses to isometric blood flow restriction exercise in healthy males. Nutrients 14(17):3645. https://doi.org/10.3390/nu14173645
doi: 10.3390/nu14173645
pubmed: 36079902
pmcid: 9460709
McManus L, Hu X, Rymer WZ, Lowery MM, Suresh NL (2015) Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle. J Neurophysiol 113(9):3186–3196. https://doi.org/10.1152/jn.00146.2015
doi: 10.1152/jn.00146.2015
pubmed: 25761952
pmcid: 4432683
Calder KM, Stashuk DW, McLean L (2008) Physiological characteristics of motor units in the brachioradialis muscle across fatiguing low-level isometric contractions. J Electromyogr Kinesiol 18(1):2–15
doi: 10.1016/j.jelekin.2006.08.012
pubmed: 17113787
Mallette MM, Cheung SS, Kumar RI, Hodges GJ, Holmes MWR, Gabriel DA (2021) The effects of local forearm heating and cooling on motor unit properties during submaximal contractions. Exp Physiol 106(1):200–211. https://doi.org/10.1113/EP088256
doi: 10.1113/EP088256
pubmed: 31912952
Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD (2002) Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol 92(4):1585–1593. https://doi.org/10.1152/japplphysiol.00668.2001
doi: 10.1152/japplphysiol.00668.2001
pubmed: 11896025
Yensen C, Matar W, Renaud JM (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283(1):C169–C177. https://doi.org/10.1152/ajpcell.00549.2001
doi: 10.1152/ajpcell.00549.2001
pubmed: 12055085
Gong B, Legault D, Miki T, Seino S, Renaud JM (2003) KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle. Am J Physiol Cell Physiol 285(6):C1464–C1474. https://doi.org/10.1152/ajpcell.00278.2003
doi: 10.1152/ajpcell.00278.2003
pubmed: 12917105
Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermιdis G, Kelly J, Black MI, Bailey SJ, Vanhatalo A, Jones AM (2013) Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol- 113:1673–1684. https://doi.org/10.1007/s00421-013-2589-8
doi: 10.1007/s00421-013-2589-8
pubmed: 23370859
Farina D, Arendt-Nielsen L, Graven-Nielsen T (2015) Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units. J Appl Physiol 99(1):197–203. https://doi.org/10.1152/japplphysiol.00059.2005
doi: 10.1152/japplphysiol.00059.2005
Murakami K, Fujisawa H, Onobe J, Sato Y (2014) Relationship between muscle fiber conduction velocity and the force-time curve during muscle twitches. J Phys Ther Sci 26(4):621–624. https://doi.org/10.1589/jpts.26.621
doi: 10.1589/jpts.26.621
pubmed: 24764647
pmcid: 3996435
Del Vecchio A, Negro F, Falla D, Bazzucchi I, Farina D, Felici F (2018) Higher muscle fiber conduction velocity and early rate of torque development in chronically strength trained individuals. J Appl Physiol 125(4):1218–1226. https://doi.org/10.1152/japplphysiol.00025.2018
doi: 10.1152/japplphysiol.00025.2018
pubmed: 30024336
Rutkove SB (2001) Effects of temperature on neuromuscular electrophysiology. Muscle Nerve 24(7):867–882. https://doi.org/10.1002/mus.1084
doi: 10.1002/mus.1084
pubmed: 11410914
Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648
doi: 10.1152/jappl.1992.72.5.1631
pubmed: 1601767
Yasuda T, Fujita T, Miyagi Y, Kubota Y, Sato Y, Nakajima T, Bemben MG, Abe T (2006) Electromyographic responses of arm and chest muscle during bench press exercise with and without KAATSU. Int J Kaatsu Train Res 2(1):15–18
doi: 10.3806/ijktr.2.15
Garland SJ, Griffin L, Ivanova T (1997) Motor unit discharge rate is not associated with muscle relaxation time in sustained submaximal contractions in humans. Neurosci Lett 239(1):25–28
doi: 10.1016/S0304-3940(97)00885-9
pubmed: 9547163
Jensen BR, Pilegaard M, Sjøgaard G (2000) Motor unit recruitment and rate coding in response to fatiguing shoulder abductions and subsequent recovery. Eur J Appl Physiol 83:190–199. https://doi.org/10.1007/s004210000278
doi: 10.1007/s004210000278
pubmed: 11104060
Bigland-Ritchie B, Cafarelli E, Vollestad NK (1986) Fatigue of submaximal static contractions. Acta Physiol Scand Suppl 556:137–148
pubmed: 3471051
Greising SM, Gransee HM, Mantilla CB, Sieck GC (2012) Systems biology of skeletal muscle: fiber type as an organizing principle. Wiley Interdiscip Rev Syst Biol Med 4(5):457–473
doi: 10.1002/wsbm.1184
pubmed: 22811254
Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS (2012) Muscle mass and peripheral fatigue: a potential role for afferent feedback? Acta Physiol 206(4):242–250. https://doi.org/10.1111/j.1748-1716.2012.02471.x
doi: 10.1111/j.1748-1716.2012.02471.x
Hidler JM, Schmit BD (2014) Evidence for force-feedback inhibition in chronic stroke. EEE Trans Neural Syst Rehabil Eng 12(2):166–176
doi: 10.1109/TNSRE.2004.828428
Li S (2017) Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol 8:120
doi: 10.3389/fneur.2017.00120
pubmed: 28421032
pmcid: 5377239