Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
31 May 2024
Historique:
medline: 29 5 2024
pubmed: 29 5 2024
entrez: 29 5 2024
Statut: ppublish

Résumé

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.

Identifiants

pubmed: 38809986
doi: 10.1126/sciadv.adm6761
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eadm6761

Auteurs

Ruslan Shaydulin (R)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Changhao Li (C)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Shouvanik Chakrabarti (S)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Matthew DeCross (M)

Quantinuum, Broomfield, CO 80021, USA.

Dylan Herman (D)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Niraj Kumar (N)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Jeffrey Larson (J)

Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Danylo Lykov (D)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.
Computational Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Pierre Minssen (P)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Yue Sun (Y)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Yuri Alexeev (Y)

Computational Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Joan M Dreiling (JM)

Quantinuum, Broomfield, CO 80021, USA.

John P Gaebler (JP)

Quantinuum, Broomfield, CO 80021, USA.

Thomas M Gatterman (TM)

Quantinuum, Broomfield, CO 80021, USA.

Justin A Gerber (JA)

Quantinuum, Broomfield, CO 80021, USA.

Kevin Gilmore (K)

Quantinuum, Broomfield, CO 80021, USA.

Dan Gresh (D)

Quantinuum, Broomfield, CO 80021, USA.

Nathan Hewitt (N)

Quantinuum, Broomfield, CO 80021, USA.

Chandler V Horst (CV)

Quantinuum, Broomfield, CO 80021, USA.

Shaohan Hu (S)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Jacob Johansen (J)

Quantinuum, Broomfield, CO 80021, USA.

Mitchell Matheny (M)

Quantinuum, Broomfield, CO 80021, USA.

Tanner Mengle (T)

Quantinuum, Broomfield, CO 80021, USA.

Michael Mills (M)

Quantinuum, Broomfield, CO 80021, USA.

Steven A Moses (SA)

Quantinuum, Broomfield, CO 80021, USA.

Brian Neyenhuis (B)

Quantinuum, Broomfield, CO 80021, USA.

Peter Siegfried (P)

Quantinuum, Broomfield, CO 80021, USA.

Romina Yalovetzky (R)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Marco Pistoia (M)

Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

Classifications MeSH