Chromothripsis in myeloid malignancies.

TP53 mutation Chromothripsis Complex karyotype Myeloid malignancy

Journal

Annals of hematology
ISSN: 1432-0584
Titre abrégé: Ann Hematol
Pays: Germany
ID NLM: 9107334

Informations de publication

Date de publication:
30 May 2024
Historique:
received: 06 03 2024
accepted: 22 05 2024
medline: 30 5 2024
pubmed: 30 5 2024
entrez: 30 5 2024
Statut: aheadofprint

Résumé

Chromothripsis refers to massive genomic rearrangements developed during a catastrophic event. In total acute myeloid leukemia (AML), the incidence of chromothripsis ranges from 0 to 6.6%, in cases of complex karyotype AML, the incidence of chromothripsis ranges from 27.3 to 100%, whereas in cases of AML with TP53 mutations, the incidence ranges from 11.1 to 90%. For other types of malignancies, the incidence of chromothripsis also varies, from 0 to 10.5% in myelodysplastic syndrome to up to 61.5% in cases of myelodysplastic syndrome with TP53 mutations.Chromothripsis is typically associated with complex karyotypes and TP53 mutations, and monosomal karyotypes are associated with the condition. ERG amplifications are frequently noted in cases of chromothripsis, whereas MYC amplifications are not. Moreover, FLT3 and NPM1 mutations are negatively associated with chromothripsis. Chromothripsis typically occurs in older patients with AML with low leukocyte counts and bone marrow blast counts. Rare cases of patients with chromothripsis who received intensive induction chemotherapy revealed low response rates and poor overall prognosis. Signal pathways in chromothripsis typically involve copy number gain and upregulation of oncogene gene sets that promote cancer growth and a concomitant copy number loss and downregulation of gene sets associated with tumor suppression functions.Patients with chromothripsis showed a trend of lower complete remission rate and worse overall survival in myeloid malignancy. Large-scale studies are required to further elucidate the causes and treatments of the condition.

Identifiants

pubmed: 38814446
doi: 10.1007/s00277-024-05814-9
pii: 10.1007/s00277-024-05814-9
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Taiwan University Hospital, Taiwan
ID : 111-S0097

Informations de copyright

© 2024. The Author(s).

Références

Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40
doi: 10.1016/j.cell.2010.11.055 pubmed: 21215367 pmcid: 3065307
Magrangeas F, Avet-Loiseau H, Munshi NC, Minvielle S (2011) Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118(3):675–678
doi: 10.1182/blood-2011-03-344069 pubmed: 21628407 pmcid: 3142904
Kloosterman WP, Hoogstraat M, Paling O, Tavakoli-Yaraki M, Renkens I, Vermaat JS et al (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12(10):R103
doi: 10.1186/gb-2011-12-10-r103 pubmed: 22014273 pmcid: 3333773
Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T et al (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488(7409):49–56
doi: 10.1038/nature11327 pubmed: 22832581 pmcid: 3683624
Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483(7391):589–593
doi: 10.1038/nature10910 pubmed: 22367537
Hirsch D, Kemmerling R, Davis S, Camps J, Meltzer PS, Ried T et al (2013) Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res 73(5):1454–1460
doi: 10.1158/0008-5472.CAN-12-0928 pubmed: 23271725
Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924
doi: 10.1093/hmg/ddr073 pubmed: 21349919
Liu P, Erez A, Nagamani SC, Dhar SU, Kołodziejska KE, Dharmadhikari AV et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903
doi: 10.1016/j.cell.2011.07.042 pubmed: 21925314 pmcid: 3242451
Nazaryan L, Stefanou EG, Hansen C, Kosyakova N, Bak M, Sharkey FH et al (2014) The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet 22(3):338–343
doi: 10.1038/ejhg.2013.147 pubmed: 23860044
Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L et al (2020) Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet 52(3):331–341
doi: 10.1038/s41588-019-0576-7 pubmed: 32025003 pmcid: 7058534
Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE et al (2020) The landscape of chromothripsis across adult cancer types. Nat Commun 11(1):2320
doi: 10.1038/s41467-020-16134-7 pubmed: 32385320 pmcid: 7210959
Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al (2012) Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 366(12):1090–1098
doi: 10.1056/NEJMoa1106968 pubmed: 22417201 pmcid: 3320218
Rausch T, Jones DT, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148(1–2):59–71
doi: 10.1016/j.cell.2011.12.013 pubmed: 22265402 pmcid: 3332216
Mackinnon RN, Campbell LJ (2013) Chromothripsis under the microscope: a cytogenetic perspective of two cases of AML with catastrophic chromosome rearrangement. Cancer Genet 206(6):238–251
doi: 10.1016/j.cancergen.2013.05.021 pubmed: 23911237
Jacoby MA, De Jesus Pizarro RE, Shao J, Koboldt DC, Fulton RS, Zhou G et al (2014) The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia. Leukemia 28(6):1242–1251
doi: 10.1038/leu.2013.368 pubmed: 24304937
Kjeldsen E (2015) Oligo-based high-resolution aCGH analysis enhances routine Cytogenetic Diagnostics in Haematological Malignancies. Cancer Genomics Proteom 12(6):301–337
Abáigar M, Robledo C, Benito R, Ramos F, Díez-Campelo M, Hermosín L et al (2016) Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLoS ONE 11(10):e0164370
doi: 10.1371/journal.pone.0164370 pubmed: 27741277 pmcid: 5065168
Bochtler T, Granzow M, Stölzel F, Kunz C, Mohr B, Kartal-Kaess M et al (2017) Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia. Blood 129(10):1333–1342
doi: 10.1182/blood-2016-09-738161 pubmed: 28119329
Rücker FG, Dolnik A, Blätte TJ, Teleanu V, Ernst A, Thol F et al (2018) Chromothripsis is linked to TP53 alteration, cell cycle impairment, and dismal outcome in acute myeloid leukemia with complex karyotype. Haematologica 103(1):e17–e20
doi: 10.3324/haematol.2017.180497 pubmed: 29079594 pmcid: 5777208
Fontana MC, Marconi G, Feenstra JDM, Fonzi E, Papayannidis C et al (2018) Ghelli Luserna di Rorá A Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 32(7): 1609–1620
Tolomeo D, L’Abbate A, Lonoce A, D’Addabbo P, Miccoli MF, Lo Cunsolo C et al (2019) Concurrent chromothripsis events in a case of TP53 depleted acute myeloid leukemia with myelodysplasia-related changes. Cancer Genet 237:63–68
doi: 10.1016/j.cancergen.2019.06.009 pubmed: 31447067
Gao J, Chen YH, Mina A, Altman JK, Kim KY, Zhang Y et al (2020) Unique morphologic and genetic characteristics of acute myeloid leukemia with chromothripsis: a clinicopathologic study from a single institution. Hum Pathol 98:22–31
doi: 10.1016/j.humpath.2020.02.003 pubmed: 32088209
Lee WY, Gutierrez-Lanz EA, Xiao H, McClintock D, Chan MP, Bixby DL et al (2022) ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations. Genes Chromosomes Cancer 61(7):399–411
doi: 10.1002/gcc.23027 pubmed: 35083818
Schandl CA, Mazzoni S, Znoyko I, Nahhas GJ, Chung D, Ding Y et al (2023) Novel high-risk acute myeloid leukemia subgroup with ERG amplification and biallelic loss of TP53. Cancer Genet 272–273:23–28
doi: 10.1016/j.cancergen.2023.01.004 pubmed: 36657266
Abel HJ, Oetjen KA, Miller CA, Ramakrishnan SM, Day RB, Helton NM et al (2023) Genomic landscape of TP53-mutated myeloid malignancies. Blood Adv 7(16):4586–4598
doi: 10.1182/bloodadvances.2023010156 pubmed: 37339484 pmcid: 10425686
Klever MK, Sträng E, Hetzel S, Jungnitsch J, Dolnik A, Schöpflin R et al (2023) AML with complex karyotype: extreme genomic complexity revealed by combined long-read sequencing and Hi-C technology. Blood Adv 7(21):6520–6531
doi: 10.1182/bloodadvances.2023010887 pubmed: 37582288 pmcid: 10632680
Coccaro N, Zagaria A, Anelli L, Tarantini F, Tota G, Conserva MR et al (2023) Optical genome mapping as a Tool to unveil New Molecular findings in Hematological patients with Complex chromosomal rearrangements. Genes (Basel) 14(12):2180
doi: 10.3390/genes14122180 pubmed: 38137002
Brierley CK, Yip BH, Orlando G, Goyal H, Wen S, Wen J et al (2023) Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A. bioRxiv. 2023.12.08.570880
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58
doi: 10.1038/nature10802 pubmed: 22258507 pmcid: 3271137
Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184
doi: 10.1038/nature14493 pubmed: 26017310 pmcid: 4742237
Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152(6):1226–1236
doi: 10.1016/j.cell.2013.02.023 pubmed: 23498933
MacKinnon RN (2018) Analysis of Chromothripsis by Combined FISH and microarray analysis. Methods Mol Biol 1769:53–77
doi: 10.1007/978-1-4939-7780-2_5 pubmed: 29564818
Mrózek K (2008) Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol 35(4):365–377
doi: 10.1053/j.seminoncol.2008.04.007 pubmed: 18692687 pmcid: 3640813
Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH et al (2008) Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 26(29):4791–4797
doi: 10.1200/JCO.2008.16.0259 pubmed: 18695255
L’Abbate A, Tolomeo D, Cifola I, Severgnini M, Turchiano A, Augello B et al (2018) MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia 32(10):2152–2166
doi: 10.1038/s41375-018-0033-0 pubmed: 29467491 pmcid: 6170393
Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089
doi: 10.1056/NEJMoa1112304 pubmed: 22417203 pmcid: 3545649
Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152
doi: 10.1056/NEJMra1406184 pubmed: 26376137
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al (2016) Genomic classification and prognosis in Acute myeloid leukemia. N Engl J Med 374(23):2209–2221
doi: 10.1056/NEJMoa1516192 pubmed: 27276561 pmcid: 4979995
Villa O, Salido M, Pérez-Vila ME, Ferrer A, Arenillas L, Pedro C et al (2008) Blast cells with nuclear extrusions in the form of micronuclei are associated with MYC amplification in acute myeloid leukemia. Cancer Genet Cytogenet 185(1):32–36
doi: 10.1016/j.cancergencyto.2008.04.014 pubmed: 18656691
Huh YO, Tang G, Talwalkar SS, Khoury JD, Ohanian M, Bueso-Ramos CE et al (2016) Double minute chromosomes in acute myeloid leukemia, myelodysplastic syndromes, and chronic myelomonocytic leukemia are associated with micronuclei, MYC or MLL amplification, and complex karyotype. Cancer Genet 209(7–8): 313 – 20
Garsed DW, Marshall OJ, Corbin VD, Hsu A, Di Stefano L, Schröder J et al (2014) The architecture and evolution of cancer neochromosomes. Cancer Cell 26(5):653–667
doi: 10.1016/j.ccell.2014.09.010 pubmed: 25517748
Li Y, Schwab C, Ryan S, Papaemmanuil E, Robinson HM, Jacobs P et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508(7494):98–102
doi: 10.1038/nature13115 pubmed: 24670643 pmcid: 3976272

Auteurs

Chien-Yuan Chen (CY)

Department of Internal Medicine, Division of Hematology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan. chienyuanchen@ntu.edu.tw.
Department of Pathology, Cytogenetic laboratory, National Taiwan University Hospital, Taipei, Taiwan. chienyuanchen@ntu.edu.tw.

Classifications MeSH