Vaccination induces broadly neutralizing antibody precursors to HIV gp41.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
30 May 2024
Historique:
received: 24 02 2024
accepted: 04 04 2024
medline: 31 5 2024
pubmed: 31 5 2024
entrez: 30 5 2024
Statut: aheadofprint

Résumé

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.

Identifiants

pubmed: 38816615
doi: 10.1038/s41590-024-01833-w
pii: 10.1038/s41590-024-01833-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI147826
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI147826
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI147826
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI144462
Organisme : Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
ID : NV-007522
Organisme : Bill & Melinda Gates Foundation
ID : INV-008813
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-007522
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-008813
Pays : United States
Organisme : Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
ID : NV-007522
Organisme : Bill & Melinda Gates Foundation
ID : INV-008813
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-002916
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-007522
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-008813
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-007522
Pays : United States
Organisme : Bill & Melinda Gates Foundation
ID : INV-008813
Pays : United States
Organisme : Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
ID : INV046626

Informations de copyright

© 2024. The Author(s).

Références

Sok, D. & Burton, D. R. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 19, 1179–1188 (2018).
pubmed: 30333615 pmcid: 6440471 doi: 10.1038/s41590-018-0235-7
Yechezkel, I., Law, M. & Tzarum, N. From structural studies to HCV vaccine design. Viruses 13, 833 (2021).
pubmed: 34064532 pmcid: 8147963 doi: 10.3390/v13050833
Guthmiller, J. J. et al. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature 602, 314–320 (2022).
pubmed: 34942633 doi: 10.1038/s41586-021-04356-8
Dacon, C. et al. Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host Microbe 31, 97–111.e12 (2023).
pubmed: 36347257 pmcid: 9639329 doi: 10.1016/j.chom.2022.10.010
Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).
pubmed: 23539181 pmcid: 3689846 doi: 10.1126/science.1234150
McGuire, A. T. et al. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J. Exp. Med. 210, 655–663 (2013).
pubmed: 23530120 pmcid: 3620356 doi: 10.1084/jem.20122824
Steichen, J. M. et al. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science 366, eaax4380 (2019).
pubmed: 31672916 pmcid: 7092357 doi: 10.1126/science.aax4380
Escolano, A. et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. Cell 166, 1445–1458 (2016).
pubmed: 27610569 pmcid: 5019122 doi: 10.1016/j.cell.2016.07.030
Steichen, J. M. et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45, 483–496 (2016).
pubmed: 27617678 pmcid: 5040827 doi: 10.1016/j.immuni.2016.08.016
Chen, X. et al. Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. Immunity 54, 324–339 (2021).
pubmed: 33453152 pmcid: 8020832 doi: 10.1016/j.immuni.2020.12.014
Leggat, D. J. et al. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 378, eadd6502 (2022).
pubmed: 36454825 pmcid: 11103259 doi: 10.1126/science.add6502
Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).
pubmed: 23151583 pmcid: 4854285 doi: 10.1038/nature11544
Pinto, D. et al. Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe 26, 623–637 (2019).
pubmed: 31653484 pmcid: 6854463 doi: 10.1016/j.chom.2019.09.016
Williams, L. D. et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci. Immunol. 2, eaal2200 (2017).
pubmed: 28783671 pmcid: 5905719 doi: 10.1126/sciimmunol.aal2200
Pegu, A. et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci. Transl. Med. 6, 243ra88 (2014).
pubmed: 24990883 pmcid: 4562469 doi: 10.1126/scitranslmed.3008992
Rantalainen, K. et al. HIV-1 envelope and MPER antibody structures in lipid assemblies. Cell Rep. 31, 107583 (2020).
pubmed: 32348769 pmcid: 7196886 doi: 10.1016/j.celrep.2020.107583
Klein, F. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153, 126–138 (2013).
pubmed: 23540694 pmcid: 3792590 doi: 10.1016/j.cell.2013.03.018
Soto, C. et al. Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8. PLoS ONE 11, e0157409 (2016).
pubmed: 27299673 pmcid: 4907498 doi: 10.1371/journal.pone.0157409
Zhang, L. et al. An MPER antibody neutralizes HIV-1 using germline features shared among donors. Nat. Commun. 10, 5389 (2019).
pubmed: 31772165 pmcid: 6879610 doi: 10.1038/s41467-019-12973-1
Haynes, B. F. et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308, 1906–1908 (2005).
pubmed: 15860590 doi: 10.1126/science.1111781
Verkoczy, L. et al. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc. Natl Acad. Sci. USA 107, 181–186 (2010).
pubmed: 20018688 doi: 10.1073/pnas.0912914107
Verkoczy, L. et al. Rescue of HIV-1 broad neutralizing antibody-expressing B cells in 2F5 V
pubmed: 21908739 doi: 10.4049/jimmunol.1101633
Chen, Y. et al. Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10. J. Immunol. 191, 1260–1275 (2013).
pubmed: 23825311 doi: 10.4049/jimmunol.1300770
Doyle-Cooper, C. et al. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10. J. Immunol. 191, 3186–3191 (2013).
pubmed: 23940276 doi: 10.4049/jimmunol.1301285
Rujas, E. et al. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Sci. Rep. 6, 38177 (2016).
pubmed: 27905530 pmcid: 5131266 doi: 10.1038/srep38177
Irimia, A. et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: insights for vaccine and therapeutic design. PLoS Pathog. 13, e1006212 (2017).
pubmed: 28225819 pmcid: 5338832 doi: 10.1371/journal.ppat.1006212
Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393–397 (2019).
pubmed: 30664748 pmcid: 6411386 doi: 10.1038/s41586-019-0879-y
DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).
pubmed: 25501908 doi: 10.1038/nm.3743
DeKosky, B. J. et al. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc. Natl Acad. Sci. USA 113, E2636–E2645 (2016).
pubmed: 27114511 pmcid: 4868480 doi: 10.1073/pnas.1525510113
Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).
pubmed: 24068931 pmcid: 3777863 doi: 10.1371/journal.ppat.1003618
Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).
pubmed: 20826338 doi: 10.1016/j.str.2010.06.010
Correia, B. E., Holmes, M. A., Huang, P. S., Strong, R. K. & Schief, W. R. High-resolution structure prediction of a circular permutation loop. Protein Sci. 20, 1929–1934 (2011).
pubmed: 21898647 pmcid: 3267956 doi: 10.1002/pro.725
Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146 (2018).
pubmed: 29287996 doi: 10.1016/j.immuni.2017.11.023
Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016).
pubmed: 27013733 pmcid: 4872700 doi: 10.1126/science.aad9195
Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2018).
Duan, H. et al. Glycan masking focuses immune responses to the HIV-1 CD4-binding site and enhances elicitation of VRC01-class precursor antibodies. Immunity 49, 301–311 (2018).
pubmed: 30076101 pmcid: 6896779 doi: 10.1016/j.immuni.2018.07.005
Havenar-Daughton, C. et al. The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Sci. Transl. Med. 10, eaat0381 (2018).
pubmed: 29973404 pmcid: 6145074 doi: 10.1126/scitranslmed.aat0381
Huang, D. et al. B cells expressing authentic naive human VRC01-class BCRs can be recruited to germinal centers and affinity mature in multiple independent mouse models. Proc. Natl Acad. Sci. USA 117, 22920–22931 (2020).
pubmed: 32873644 pmcid: 7502816 doi: 10.1073/pnas.2004489117
Wang, X. et al. Multiplexed CRISPR/CAS9-mediated engineering of pre-clinical mouse models bearing native human B cell receptors. EMBO J. 40, e105926 (2021).
pubmed: 33258500 doi: 10.15252/embj.2020105926
Lefranc, M. P. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 29, 207–209 (2001).
pubmed: 11125093 pmcid: 29797 doi: 10.1093/nar/29.1.207
Vazquez Bernat, N. et al. Rhesus and cynomolgus macaque immunoglobulin heavy-chain genotyping yields comprehensive databases of germline VDJ alleles. Immunity 54, 355–366 (2021).
pubmed: 33484642 doi: 10.1016/j.immuni.2020.12.018
Cirelli, K. M. et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 1153–1171 (2019).
pubmed: 31080066 pmcid: 6619430 doi: 10.1016/j.cell.2019.04.012
Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci. Immunol. 6, eabf1152 (2021).
pubmed: 34860581 pmcid: 8763571 doi: 10.1126/sciimmunol.abf1152
Ofek, G. et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl Acad. Sci. USA 107, 17880–17887 (2010).
pubmed: 20876137 pmcid: 2964213 doi: 10.1073/pnas.1004728107
Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).
pubmed: 24499818 pmcid: 4260937 doi: 10.1038/nature12966
Krebs, S. J. et al. Longitudinal analysis reveals early development of three MPER-directed neutralizing antibody lineages from an HIV-1-infected individual. Immunity 50, 677–691 (2019).
pubmed: 30876875 pmcid: 6555550 doi: 10.1016/j.immuni.2019.02.008
Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, eaay5051 (2020).
pubmed: 32409444 pmcid: 7391827 doi: 10.1126/science.aay5051
Schoeder, C. T. et al. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog. 18, e1010518 (2022).
pubmed: 35584193 pmcid: 9170092 doi: 10.1371/journal.ppat.1010518
Olsen, T. H., Boyles, F. & Deane, C. M. Observed antibody space: a diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci. 31, 141–146 (2022).
pubmed: 34655133 doi: 10.1002/pro.4205
Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).
pubmed: 36131022 pmcid: 9491273 doi: 10.1038/s41586-022-05216-9
Willis, J. R. et al. Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity 55, 2149–2167 (2022).
pubmed: 36179689 pmcid: 9671094 doi: 10.1016/j.immuni.2022.09.001
Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).
pubmed: 21187238 pmcid: 4083816 doi: 10.1016/B978-0-12-381270-4.00019-6
Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).
pubmed: 32483333 doi: 10.1038/s41592-020-0848-2
Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).
pubmed: 17406305 doi: 10.1038/nprot.2006.94
Zhou, J., Panaitiu, A. E. & Grigoryan, G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc. Natl Acad. Sci. USA 117, 1059–1068 (2020).
pubmed: 31892539 doi: 10.1073/pnas.1908723117
Alexander, J. et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1, 751–761 (1994).
pubmed: 7895164 doi: 10.1016/S1074-7613(94)80017-0
Cohen, K. W. et al. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Sci. Transl. Med. 15, eadf3309 (2023).
pubmed: 37224227 pmcid: 11036875 doi: 10.1126/scitranslmed.adf3309
Allen, J. D. et al. Site-specific steric control of SARS-CoV-2 spike glycosylation. Biochemistry 60, 2153–2169 (2021).
pubmed: 34213308 doi: 10.1021/acs.biochem.1c00279
Baboo, S. et al. DeGlyPHER: an ultrasensitive method for the analysis of viral spike N-glycoforms. Anal. Chem. 93, 13651–13657 (2021).
pubmed: 34597027 pmcid: 8848675 doi: 10.1021/acs.analchem.1c03059
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27754618 doi: 10.1016/S0076-6879(97)76066-X
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766 doi: 10.1002/pro.3330
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).
pubmed: 31730249 pmcid: 7096722 doi: 10.1002/pro.3791
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT–PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).
pubmed: 17996249 doi: 10.1016/j.jim.2007.09.017
Lee, J. H. et al. Vaccine genetics of IGHV1-2 VRC01-class broadly neutralizing antibody precursor naive human B cells. NPJ Vaccines 6, 113 (2021).
pubmed: 34489473 pmcid: 8421370 doi: 10.1038/s41541-021-00376-7
Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).
pubmed: 26069265 pmcid: 4793929 doi: 10.1093/bioinformatics/btv359
Lin, Y. C. et al. One-step CRISPR/Cas9 method for the rapid generation of human antibody heavy chain knock-in mice. EMBO J. 37, e99243 (2018).
pubmed: 30087111 pmcid: 6138433 doi: 10.15252/embj.201899243
von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat. Protoc. 11, 1908–1923 (2016).
doi: 10.1038/nprot.2016.102
Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008).
pubmed: 18503082 pmcid: 2447746 doi: 10.1093/nar/gkn316
Giudicelli, V., Brochet, X. & Lefranc, M.-P. IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb. Protoc. 2011, 695–715 (2011).
pubmed: 21632778
Tian, M. et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell 166, 1471–1484 (2016).
pubmed: 27610571 pmcid: 5103708 doi: 10.1016/j.cell.2016.07.029
Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).
pubmed: 8506294 pmcid: 46545 doi: 10.1073/pnas.90.10.4528
Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).
pubmed: 27031497 pmcid: 4895203 doi: 10.1038/nprot.2016.043
Lin, S. G. et al. Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc. Natl Acad. Sci. USA 113, 7846–7851 (2016).
pubmed: 27354528 pmcid: 4948367 doi: 10.1073/pnas.1608649113
Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383, 1544–1555 (2020).
pubmed: 32722908 doi: 10.1056/NEJMoa2024671
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
pubmed: 33378609 doi: 10.1056/NEJMoa2035389
Hurtado, J. et al. Efficient isolation of rare B cells using next-generation antigen barcoding. Front. Cell. Infect. Microbiol. 12, 962945 (2022).
pubmed: 36968243 doi: 10.3389/fcimb.2022.962945
Breden, F. et al. Reproducibility and reuse of adaptive immune receptor repertoire data. Front. Immunol. 8, 1418 (2017).
pubmed: 29163494 pmcid: 5671925 doi: 10.3389/fimmu.2017.01418
Rodriguez, O. L. et al. A novel framework for characterizing genomic haplotype diversity in the human immunoglobulin heavy chain locus. Front. Immunol. 11, 2136 (2020).
pubmed: 33072076 pmcid: 7539625 doi: 10.3389/fimmu.2020.02136
Gibson, W. S. et al. Characterization of the immunoglobulin lambda chain locus from diverse populations reveals extensive genetic variation chain locus from diverse populations reveals extensive genetic variation. Genes Immun. 24, 21–31 (2023).
pubmed: 36539592 doi: 10.1038/s41435-022-00188-2
Cottrell, C. A. et al. Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathog. 16, e1008753 (2020).
pubmed: 32866207 pmcid: 7485981 doi: 10.1371/journal.ppat.1008753
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).
pubmed: 24291345 doi: 10.1016/j.jim.2013.11.022
Zhao, F. et al. Mapping neutralizing antibody epitope specificities to an HIV Env trimer in immunized and in infected rhesus macaques. Cell Rep. 32, 108122 (2020).
pubmed: 32905766 pmcid: 7487785 doi: 10.1016/j.celrep.2020.108122
Schiffner, T. SchiefLab/Schiffner2024: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.11003090 (2024).

Auteurs

Torben Schiffner (T)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany.

Ivy Phung (I)

Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Rashmi Ray (R)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Adriana Irimia (A)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Ming Tian (M)

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Department of Genetics, Harvard Medical School, Boston, MA, USA.

Olivia Swanson (O)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Jeong Hyun Lee (JH)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Chang-Chun D Lee (CD)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Ester Marina-Zárate (E)

Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

So Yeon Cho (SY)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Jiachen Huang (J)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Gabriel Ozorowski (G)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Patrick D Skog (PD)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Andreia M Serra (AM)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Kimmo Rantalainen (K)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Joel D Allen (JD)

School of Biological Sciences, University of Southampton, Southampton, UK.

Sabyasachi Baboo (S)

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Oscar L Rodriguez (OL)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

Sunny Himansu (S)

Moderna, Inc., Cambridge, MA, USA.

Jianfu Zhou (J)

Department of Computer Science, Dartmouth College, Hanover, NH, USA.

Jonathan Hurtado (J)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Claudia T Flynn (CT)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Katherine McKenney (K)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Colin Havenar-Daughton (C)

Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Swati Saha (S)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

Kaitlyn Shields (K)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

Steven Schulze (S)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

Melissa L Smith (ML)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

Chi-Hui Liang (CH)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Laura Toy (L)

Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Simone Pecetta (S)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Ying-Cing Lin (YC)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Jordan R Willis (JR)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Fabian Sesterhenn (F)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Daniel W Kulp (DW)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Xiaozhen Hu (X)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Christopher A Cottrell (CA)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Xiaoya Zhou (X)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Jennifer Ruiz (J)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Xuesong Wang (X)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Usha Nair (U)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Kathrin H Kirsch (KH)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Hwei-Ling Cheng (HL)

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Department of Genetics, Harvard Medical School, Boston, MA, USA.

Jillian Davis (J)

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Department of Genetics, Harvard Medical School, Boston, MA, USA.

Oleksandr Kalyuzhniy (O)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Alessia Liguori (A)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Jolene K Diedrich (JK)

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Julia T Ngo (JT)

Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.

Vanessa Lewis (V)

Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.

Nicole Phelps (N)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Ryan D Tingle (RD)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Skye Spencer (S)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Erik Georgeson (E)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Yumiko Adachi (Y)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Michael Kubitz (M)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Saman Eskandarzadeh (S)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Marc A Elsliger (MA)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Rama R Amara (RR)

Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA.

Elise Landais (E)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Bryan Briney (B)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA.
San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA, USA.

Dennis R Burton (DR)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.

Diane G Carnathan (DG)

Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.

Guido Silvestri (G)

Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.

Corey T Watson (CT)

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.

John R Yates (JR)

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

James C Paulson (JC)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

Max Crispin (M)

School of Biological Sciences, University of Southampton, Southampton, UK.

Gevorg Grigoryan (G)

Department of Computer Science, Dartmouth College, Hanover, NH, USA.
Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
Generate Biomedicines, Inc., Somerville, MA, USA.

Andrew B Ward (AB)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Devin Sok (D)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.

Frederick W Alt (FW)

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Department of Genetics, Harvard Medical School, Boston, MA, USA.

Ian A Wilson (IA)

IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. wilson@scripps.edu.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA. wilson@scripps.edu.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. wilson@scripps.edu.

Facundo D Batista (FD)

The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA. fbatista1@mgh.harvard.edu.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. fbatista1@mgh.harvard.edu.

Shane Crotty (S)

Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA. shane@lji.org.
Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. shane@lji.org.
Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA. shane@lji.org.

William R Schief (WR)

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. schief@scripps.edu.
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. schief@scripps.edu.
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA. schief@scripps.edu.
The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA. schief@scripps.edu.
Moderna, Inc., Cambridge, MA, USA. schief@scripps.edu.

Classifications MeSH