Abnormal Cerebrovascular Activity, Perfusion, and Glymphatic Clearance in Lewy Body Diseases.
Parkinson's disease
cerebrovascular activity
dementia with Lewy bodies
glymphatic system
neurovascular complex
Journal
Movement disorders : official journal of the Movement Disorder Society
ISSN: 1531-8257
Titre abrégé: Mov Disord
Pays: United States
ID NLM: 8610688
Informations de publication
Date de publication:
30 May 2024
30 May 2024
Historique:
revised:
01
05
2024
received:
21
03
2024
accepted:
09
05
2024
medline:
31
5
2024
pubmed:
31
5
2024
entrez:
31
5
2024
Statut:
aheadofprint
Résumé
Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NINDS NIH HHS
ID : R01NS133569
Pays : United States
Organisme : NIA NIH HHS
ID : P20AG068077
Pays : United States
Organisme : NIA NIH HHS
ID : R03AG075408
Pays : United States
Organisme : NIGMS NIH HHS
ID : P30 GM122734
Pays : United States
Informations de copyright
© 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Références
Jellinger KA, Korczyn AD. Are dementia with Lewy bodies and Parkinson's disease dementia the same disease? BMC Med 2018;16(1):34.
Okazaki H, Lipkin LE, Aronson SM. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. J Neuropathol Exp Neurol 1961;20(2):237–244.
Kosaka K, Oyanagi S, Matsushita M, Hori A. Presenile dementia with Alzheimer‐, Pick‐ and Lewy‐body changes. Acta Neuropathol 1976;36(3):221–233.
Ince PG, Perry EK, Morris CM. Dementia with Lewy bodies. A distinct non‐Alzheimer dementia syndrome? Brain Pathol 1998;8(2):299–324.
Just MK, Gram H, Theologidis V, Jensen PH, Nilsson KPR, Lindgren M, et al. Alpha‐synuclein strain variability in body‐first and brain‐first synucleinopathies. Front Aging Neurosci 2022;14:907293.
Horsager J, Andersen KB, Knudsen K, Skjærbæk C, Fedorova TD, Okkels N, et al. Brain‐first versus body‐first Parkinson's disease: a multimodal imaging case‐control study. Brain 2020;143(10):3077–3088.
Borghammer P. The α‐synuclein origin and connectome model (SOC model) of Parkinson's disease: explaining motor asymmetry, non‐motor phenotypes, and cognitive decline. J Parkinsons Dis 2021;11(2):455–474.
Uchihara T, Giasson BI. Propagation of alpha‐synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016;131(1):49–73.
Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci 2021;24(9):1198–1209.
Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 2017;96(1):17–42.
Scigliano G, Musicco M, Soliveri P, Piccolo I, Ronchetti G, Girotti F. Reduced risk factors for vascular disorders in Parkinson disease patients: a case‐control study. Stroke 2006;37(5):1184–1188.
Chan P, Wei C, Hung G, Chiu P. Reduced vascular risk factors in Parkinson's disease dementia and dementia with Lewy bodies compared to Alzheimer's disease. Brain Behav 2018;8(3):e00916.
Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, et al. Associations between cerebrovascular risk factors and Parkinson disease. Ann Neurol 2019;86(4):572–581.
Pilotto A, Turrone R, Liepelt‐Scarfone I, Bianchi M, Poli L, Borroni B, et al. Vascular risk factors and cognition in Parkinson's disease. J Alzheimers Dis 2016;51(2):563–570.
Malek N, Lawton MA, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Mov Disord 2016;31(10):1518–1526.
Potashkin J, Huang X, Becker C, Chen H, Foltynie T, Marras C. Understanding the links between cardiovascular disease and Parkinson's disease. Mov Disord 2020;35(1):55–74.
Chen H, Wan H, Zhang M, Liu G, Wang X, Wang Z, et al. Cerebral small vessel disease may worsen motor function, cognition, and mood in Parkinson's disease. Parkinsonism Relat Disord 2021;83:86–92.
Jellinger KA. Prevalence and impact of cerebrovascular lesions in Alzheimer and lewy body diseases. Neurodegener Dis 2010;7(1–3):112–115.
Postuma RB, Gagnon J, Pelletier A, Montplaisir J. Prodromal autonomic symptoms and signs in Parkinson's disease and dementia with Lewy bodies. Mov Disord 2013;28(5):597–604.
Mizukami K. Autonomic dysfunction in dementia with Lewy bodies: focusing on cardiovascular and respiratory dysfunction. Psychiatry Clin Neurosci Rep 2023;2(3):e129.
Merola A, Romagnolo A, Comi C, Rosso M, Artusi CA, Zibetti M, et al. Prevalence and burden of dysautonomia in advanced Parkinson's disease. Mov Disord 2017;32(5):796–797.
Goldstein DS, Holmes C, Sharabi Y, Wu T. Survival in synucleinopathies: a prospective cohort study. Neurology 2015;85(18):1554–1561.
Longardner K, Merola A, Litvan I, De Stefano AM, Maule S, Vallelonga F, et al. Differential impact of individual autonomic domains on clinical outcomes in Parkinson's disease. J Neurol 2022;269(10):5510–5520.
Jain S, Goldstein DS. Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis. Neurobiol Dis 2012;46(3):572–580.
Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson's disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis 2020;134:104700.
Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. (123)I‐metaiodobenzylguanidine myocardial scintigraphy in Parkinson's disease. J Neurol Neurosurg Psychiatry 1999;67(2):189–194.
Taki J, Nakajima K, Hwang EH, Matsunari I, Komai K, Yoshita M, et al. Peripheral sympathetic dysfunction in patients with Parkinson's disease without autonomic failure is heart selective and disease specific. Eur J Nucl Med 2000;27:566–573.
Courbon F, Brefel‐Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc J, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson's disease. Mov Disord 2003;18(8):890–897.
Palma J, Gomez‐Esteban JC, Norcliffe‐Kaufmann L, Martinez J, Tijero B, Berganzo K, et al. Orthostatic hypotension in Parkinson disease: how much you fall or how low you go? Mov Disord 2015;30(5):639–645.
Parati G, Torlasco C, Pengo M, Bilo G, Ochoa JE. Blood pressure variability: its relevance for cardiovascular homeostasis and cardiovascular diseases. Hypertens Res 2020;43(7):609–620.
Ma Y, Song A, Viswanathan A, Blacker D, Vernooij MW, Hofman A, et al. Blood pressure variability and cerebral small vessel disease: a systematic review and meta‐analysis of population‐based cohorts. Stroke 2020;51(1):82–89.
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction–the role of hypoxia when alpha‐synuclein gets intimate with mitochondria. Neurobiol Aging 2021;107:128–141.
Massey A, Boag MK, Magnier A, Bispo DPCF, Khoo TK, Pountney DL. Glymphatic system dysfunction and sleep disturbance may contribute to the pathogenesis and progression of Parkinson's disease. Int J Mol Sci 2022;23(21):12928.
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science 2020;370(6512):50–56.
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α‐synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022;11:19.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012;4(147):147ra111.
Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019;366(6465):628–631.
Holstein‐Rønsbo S, Gan Y, Giannetto MJ, Rasmussen MK, Sigurdsson B, Beinlich FRM, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat Neurosci 2023;26:1042–10–1042–53.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342(6156):373–377.
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner's guide. Neurochem Res 2015;40:2583–2599.
Sundaram S, Hughes RL, Peterson E, Müller‐Oehring EM, Brontë‐Stewart HM, Poston KL, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019;103:305–315.
Buongiorno M, Marzal C, Fernandez M, Cullell N, De Mena L, Sánchez‐Benavides G, et al. Altered sleep and neurovascular dysfunction in alpha‐synucleinopathies: the perfect storm for glymphatic failure. Front Aging Neurosci 2023;15:1251755.
Bohnen NI, Hu M. Sleep disturbance as potential risk and progression factor for Parkinson's disease. J Parkinsons Dis 2019;9(3):603–614.
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018;21(10):1318–1331.
Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020;17:69.
Banks WA, Reed MJ, Logsdon AF, Rhea EM, Erickson MA. Healthy aging and the blood–brain barrier. Nat Aging 2021;1(3):243–254.
Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH. Interaction between blood‐brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev 2018;90:26–33.
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, et al. A clinical primer for the glymphatic system. Brain 2022;145(3):843–857.
Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of substantia nigra pars compacta cell for understanding parkinsonian neurodegeneration. Sci Rep 2021;11(1):1754.
Guo M, Ji X, Liu J. Hypoxia and alpha‐synuclein: inextricable link underlying the pathologic progression of Parkinson's disease. Front Aging Neurosci 2022;14:919343.
Burtscher J, Millet GP. Hypoxia, acidification and inflammation: partners in crime in Parkinson's disease pathogenesis? Immuno 2021;1(2):78–90.
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017;18(2):101.
Pacelli C, Giguère N, Bourque MJ, Lévesque M, Slack RS, Trudeau LÉ. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol 2015;25(18):2349–2360.
Galvin JE. Interaction of alpha‐synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 2006;112:115–126.
Wise RM, Wagener A, Fietzek UM, Klopstock T, Mosharov EV, Zucca FA, et al. Interactions of dopamine, iron, and alpha‐synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022;175:105920.
Willie CK, Tzeng Y, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol 2014;592(5):841–859.
Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG. Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 2022;600(1):15–39.
Hotta H. Neurogenic control of parenchymal arterioles in the cerebral cortex. Prog Brain Res 2016;225:3–39.
Ter Laan M, Van Dijk JMC, Elting JWJ, Staal MJ, Absalom AR. Sympathetic regulation of cerebral blood flow in humans: a review. Br J Anaesth 2013;111(3):361–367.
Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, et al. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. Lancet Neurol 2022;21(4):381–392.
Xia Y, Eeles E, Fripp J, Pinsker D, Thomas P, Latter M, et al. Reduced cortical cholinergic innervation measured using [18F]‐FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment. Neuroimage Clin 2022;34:102992.
Okkels N, Horsager J, Labrador‐Espinosa MA, Hansen FO, Andersen KB, Just MK, et al. Distribution of cholinergic nerve terminals in the aged human brain measured with [18F] FEOBV PET and its correlation with histological data. Neuroimage 2023;269:119908.
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of arterial spin labeling (ASL) images in Parkinson's disease (PD): a systematic review. Acad Radiol 2023;30(8):1695–1708.
Al‐Bachari S, Parkes LM, Vidyasagar R, Hanby MF, Tharaken V, Leroi I, et al. Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson's disease. Neuroimage Clin 2014;6:1–8.
Al‐Bachari S, Vidyasagar R, Emsley HCA, Parkes LM. Structural and physiological neurovascular changes in idiopathic Parkinson's disease and its clinical phenotypes. J Cereb Blood Flow Metab 2017;37(10):3409–3421.
Suo X, Lei D, Cheng L, Li N, Zuo P, Wang DJJ, et al. Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease. Hum Brain Mapp 2019;40(4):1317–1327.
Firbank MJ, Colloby SJ, Burn DJ, McKeith IG, O'Brien JT. Regional cerebral blood flow in Parkinson's disease with and without dementia. Neuroimage 2003;20(2):1309–1319.
Zhang C, Wu B, Wang X, Chen C, Zhao R, Lu H, et al. Vascular, flow and perfusion abnormalities in Parkinson's disease. Parkinsonism Relat Disord 2020;73:8–13.
Iwabuchi Y, Shiga T, Kameyama M, Miyazawa R, Seki M, Ito D, et al. Striatal dopaminergic depletion pattern reflects pathological brain perfusion changes in Lewy body diseases. Mol Imaging Biol 2022;24(6):950–958.
Liu P, Li Y, Pinho M, Park DC, Welch BG, Lu H. Cerebrovascular reactivity mapping without gas challenges. Neuroimage 2017;146:320–326.
Liu P, Jill B, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review. Neuroimage 2019;187:104–115.
Pelizzari L, Laganà MM, Rossetto F, Bergsland N, Galli M, Baselli G, et al. Cerebral blood flow and cerebrovascular reactivity correlate with severity of motor symptoms in Parkinson's disease. Ther Adv Neurol Disord 2019;12:1756286419838354.
Ryman SG, Shaff N, Dodd A, Nitschke S, Wertz C, Julio K, et al. Reduced and delayed cerebrovascular reactivity in patients with Parkinson's disease. Mov Disord 2023;38(7):1262–1272.
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff NA, Dodd AB, et al. Parkinson's disease cerebrovascular reactivity pattern: a feasibility study. J Cereb Blood Flow Metab 2024 Apr 5;271678X241241895. https://journals.sagepub.com/doi/full/10.1177/0271678X241241895
Cohen AD, Agarwal M, Jagra AS, Nencka AS, Meier TB, Lebel RM, et al. Longitudinal reproducibility of MR perfusion using 3D pseudocontinuous arterial spin labeling with Hadamard‐encoded multiple postlabeling delays. J Magn Reson Imaging 2020;51(6):1846–1853.
Krainik A, Maillet A, Fleury V, Sahin M, Troprès I, Lamalle L, et al. Levodopa does not change cerebral vasoreactivity in Parkinson's disease. Mov Disord 2013;28(4):469–475.
Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke 2013;44(6 Suppl. 1):S93–S95.
Kelley DH, Thomas JH. Cerebrospinal fluid flow. Annu Rev Fluid Mech 2023;55:237–264.
Agarwal N, Lewis LD, Hirschler L, Rivera LR, Naganawa S, Levendovszky SR, et al. Current understanding of the anatomy, physiology, and magnetic resonance imaging of neurofluids: update from the 2022 “ISMRM Imaging Neurofluids Study group” workshop in Rome. J Magn Reson Imaging 2024;59(2):431–449.
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The glymphatic system and waste clearance with brain aging: a review. Gerontology 2019;65(2):106–119.
Zhang Y, Zhang C, He XZ, Li ZH, Meng JC, Mao RT, et al. Interaction between the glymphatic system and α‐synuclein in Parkinson's disease. Mol Neurobiol 2023;60(4):2209–2222.
Cui H, Wang W, Zheng X, Xia D, Liu H, Qin C, et al. Decreased AQP4 expression aggravates ɑ‐synuclein pathology in Parkinson's disease mice, possibly via impaired glymphatic clearance. J Mol Neurosci 2021;71(12):2500–2513.
Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates Parkinson's disease‐like pathology in mice overexpressing mutated α‐synuclein. Transl Neurodegener 2019;8(1):1–17.
Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J Neurosci 2013;33(46):18190–18199.
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018;9(1):4878.
Wang Y, van Gelderen P, de Zwart JA, Özbay PS, Mandelkow H, Picchioni D, et al. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics. Neuroimage 2022;258:119362.
Libecap TJ, Bauer CE, Zachariou V, Pappas CA, Raslau FD, Liu P, et al. Association of baseline cerebrovascular reactivity and longitudinal development of enlarged perivascular spaces in the basal ganglia. Stroke 2023;54(11):2785–2793.
Nair VV, Kish BR, Chong PL, Yang HCS, Wu YC, Tong Y, et al. Neurofluid coupling during sleep and wake states. Sleep Med 2023;110:44–53.
Han F, Brown GL, Zhu Y, Belkin‐Rosen AE, Lewis MM, Du G, et al. Decoupling of global brain activity and cerebrospinal fluid flow in Parkinson's disease cognitive decline. Mov Disord 2021;36(9):2066–2076.
Wang Z, Song Z, Zhou C, Fang Y, Gu L, Yang W, et al. Reduced coupling of global brain function and cerebrospinal fluid dynamics in Parkinson's disease. J Cereb Blood Flow Metab 2023;43(8):1328–1339.
Liu X, Barisano G, Shao X, Jann K, Ringman JM, Lu H, et al. Cross‐vendor test‐retest validation of diffusion tensor image analysis along the perivascular space (DTI‐ALPS) for evaluating glymphatic system function. Aging Dis 2023;May 26. https://doi.org/10.14336/AD.2023.0321-2
Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis 2022;8(1):54.
He P, Shi L, Li Y, Duan Q, Qiu Y, Feng S, et al. The association of the glymphatic function with Parkinson's disease symptoms: neuroimaging evidence from longitudinal and cross‐sectional studies. Ann Neurol 2023;94(4):672–683.
Meng JC, Shen MQ, Lu YL, Feng HX, Chen XY, Xu DQ, et al. Correlation of glymphatic system abnormalities with Parkinson's disease progression: a clinical study based on non‐invasive fMRI. J Neurol 2024;271(1):457–471.
Shen T, Yue Y, Zhao S, Xie J, Chen Y, Tian J, et al. The role of brain perivascular space burden in early‐stage Parkinson's disease. NPJ Parkinson's Dis 2021;7(1):12.
Park YW, Shin N, Chung SJ, Kim J, Lim SM, Lee PH, et al. Magnetic resonance imaging–visible perivascular spaces in basal ganglia predict cognitive decline in Parkinson's disease. Mov Disord 2019;34(11):1672–1679.
Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease. Nat Med 2021;27(3):411–418.
Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 2020;87(3):357–369.
Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, et al. Non‐invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022;13(1):203.
Dodet P, Houot M, Leu‐Semenescu S, Corvol JC, Lehéricy S, Mangone G, et al. Sleep disorders in Parkinson's disease, an early and multiple problem. NPJ Parkinson's Dis 2024;10(1):46.
Iranzo A, Tolosa E, Gelpi E, Molinuevo JL, Valldeoriola F, Serradell M, et al. Neurodegenerative disease status and post‐mortem pathology in idiopathic rapid‐eye‐movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013;12(5):443–453.
Postuma RB, Iranzo A, Hu M, Högl B, Boeve BF, Manni R, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142(3):744–759.
Postuma RB, Berg D. Prodromal Parkinson's disease: the decade past, the decade to come. Mov Disord 2019;34(5):665–675.
Hsiao Y, Chen Y, Tseng C, Wu L, Perng D, Chen Y, et al. Sleep disorders and an increased risk of Parkinson's disease in individuals with non‐apnea sleep disorders: a population‐based cohort study. J Sleep Res 2017;26(5):623–628.
Arici Duz O, Helvaci YN. Nocturnal blood pressure changes in Parkinson's disease: correlation with autonomic dysfunction and vitamin D levels. Acta Neurol Belg 2020;120:915–920.
Tulbă D, Cozma L, Bălănescu P, Buzea A, Băicuș C, Popescu BO. Blood pressure patterns in patients with Parkinson's disease: a systematic review. J Pers Med 2021;11(2):129.
Sauvageot N, Vaillant M, Diederich NJ. Reduced sympathetically driven heart rate variability during sleep in Parkinson's disease: a case‐control polysomnography‐based study. Mov Disord 2011;26(2):234–240.
Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 2009;8(4):382–397.
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci Adv 2023;9(7):eabq1141.
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood‐brain barrier: from physiology to disease and back. Physiol Rev 2019;99(1):21–78.
Engelhardt S, Patkar S, Ogunshola OO. Cell‐specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol 2014;171(5):1210–1230.
Nzou G, Wicks RT, VanOstrand NR, Mekky GA, Seale SA, El‐Taibany A, et al. Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood‐brain barrier dysfunction. Sci Rep 2020;10(1):9766.
Elabi O, Gaceb A, Carlsson R, Padel T, Soylu‐Kucharz R, Cortijo I, et al. Human α‐synuclein overexpression in a mouse model of Parkinson's disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep 2021;11(1):1120.
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, et al. Cerebral microvascular injury induced by Lag3‐dependent α‐synuclein fibril endocytosis exacerbates cognitive impairment in a mouse model of α‐synucleinopathies. Adv Sci 2023;10(25):e2301903.
Yang HC, Inglis B, Talavage TM, Nair VV, Yao J, Fitzgerald B, et al. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: an fMRI study. J Cerebr Blood Flow Metab 2022;42(6):1091–1103.
Sharabi Y, Vatine GD, Ashkenazi A. Parkinson's disease outside the brain: targeting the autonomic nervous system. Lancet Neurol 2021;20(10):868–876.
Scholz SW, Moroz BE, Saez‐Atienzar S, Chia R, Cahoon EK, Dalgard CL, et al. Association of cardiovascular disease management drugs with Lewy body dementia: a case–control study. Brain Commun 2024;6(1):fcad346.
Visser AE, de Vries NM, Richard E, Bloem BR. Tackling vascular risk factors as a possible disease modifying intervention in Parkinson's disease. NPJ Parkinson's Dis 2024;10(1):50.