Deep brain stimulation of symptom-specific networks in Parkinson's disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 May 2024
Historique:
received: 14 03 2023
accepted: 13 05 2024
medline: 1 6 2024
pubmed: 1 6 2024
entrez: 31 5 2024
Statut: epublish

Résumé

Deep Brain Stimulation can improve tremor, bradykinesia, rigidity, and axial symptoms in patients with Parkinson's disease. Potentially, improving each symptom may require stimulation of different white matter tracts. Here, we study a large cohort of patients (N = 237 from five centers) to identify tracts associated with improvements in each of the four symptom domains. Tremor improvements were associated with stimulation of tracts connected to primary motor cortex and cerebellum. In contrast, axial symptoms are associated with stimulation of tracts connected to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements are associated with the stimulation of tracts connected to the supplementary motor and premotor cortices, respectively. We introduce an algorithm that uses these symptom-response tracts to suggest optimal stimulation parameters for DBS based on individual patient's symptom profiles. Application of the algorithm illustrates that our symptom-tract library may bear potential in personalizing stimulation treatment based on the symptoms that are most burdensome in an individual patient.

Identifiants

pubmed: 38821913
doi: 10.1038/s41467-024-48731-1
pii: 10.1038/s41467-024-48731-1
doi:

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

4662

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 424778381 - TRR 295

Informations de copyright

© 2024. The Author(s).

Références

Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).
pubmed: 16943402 doi: 10.1056/NEJMoa060281
Fasano, A., Aquino, C. C., Krauss, J. K., Honey, C. R. & Bloem, B. R. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat. Rev. Neurol. 11, 98–110 (2015).
pubmed: 25582445 doi: 10.1038/nrneurol.2014.252
Schrader, C. et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology 77, 483–488 (2011).
pubmed: 21775741 doi: 10.1212/WNL.0b013e318227b19e
Barbe, M. T. et al. Deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov. Disord. 35, 82–90 (2020).
pubmed: 31755599 doi: 10.1002/mds.27892
Yin, Z. et al. Persistent adverse effects following different targets and periods after bilateral deep brain stimulation in patients with Parkinson’s disease. J. Neurol. Sci. 393, 116–127 (2018).
pubmed: 30153572 doi: 10.1016/j.jns.2018.08.016
Aviles-Olmos, I. et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J. Neurol. Neurosurg. Psychiatry 85, 1419–1425 (2014).
pubmed: 24790212 doi: 10.1136/jnnp-2013-306907
Bejjani, B.-P. et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J. Neurosurg. 92, 615–625 (2000).
pubmed: 10761650 doi: 10.3171/jns.2000.92.4.0615
Picillo, M., Lozano, A. M., Kou, N., Puppi Munhoz, R. & Fasano, A. Programming deep brain stimulation for Parkinson’s disease: the toronto western hospital algorithms. Brain Stimul. 9, 425–437 (2016).
pubmed: 26968806 doi: 10.1016/j.brs.2016.02.004
Hassler, R., Riechert, T., Mundinger, F., Umbach, W. & Ganglberger, J. A. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain 83, 337–350 (1960).
pubmed: 13852002 doi: 10.1093/brain/83.2.337
McGregor, M. M. & Nelson, A. B. Circuit mechanisms of Parkinson’s disease. Neuron 101, 1042–1056 (2019).
pubmed: 30897356 doi: 10.1016/j.neuron.2019.03.004
Strotzer, Q. D. et al. Deep brain stimulation: Connectivity profile for bradykinesia alleviation. Ann. Neurol. 85, 852–864 (2019).
pubmed: 30937956 doi: 10.1002/ana.25475
Akram, H. et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. NeuroImage 158, 332–345 (2017).
pubmed: 28711737 doi: 10.1016/j.neuroimage.2017.07.012
Ni, Z., Pinto, A. D., Lang, A. E. & Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann. Neurol. 68, 816–824 (2010).
pubmed: 21194152 doi: 10.1002/ana.22221
Helmich, R. C., Toni, I., Deuschl, G. & Bloem, B. R. The Pathophysiology of Essential Tremor and Parkinson’s Tremor. Curr. Neurol. Neurosci. Rep. 13, 378 (2013).
pubmed: 23893097 doi: 10.1007/s11910-013-0378-8
Sturman, M. M., Vaillancourt, D. E., Metman, L. V., Bakay, R. A. E. & Corcos, D. M. Effects of subthalamic nucleus stimulation and medication on resting and postural tremor in Parkinson’s disease. Brain 127, 2131–2143 (2004).
pubmed: 15240437 doi: 10.1093/brain/awh237
Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat. Commun. 11, 3364 (2020).
pubmed: 32620886 pmcid: 7335093 doi: 10.1038/s41467-020-16734-3
Grill, W. M., Snyder, A. N. & Miocinovic, S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15, 1137–1140 (2004).
pubmed: 15129161 doi: 10.1097/00001756-200405190-00011
Hollunder, B. & Horn, A. Mapping the dysfunctome provides an avenue for targeted brain circuit therapy. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01572-z (2024).
doi: 10.1038/s41593-024-01572-z pubmed: 38388734 pmcid: 10917675
Horn, A. et al. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease. Ann. Neurol. 82, 67–78 (2017).
pubmed: 28586141 pmcid: 5880678 doi: 10.1002/ana.24974
Treu, S. et al. Deep brain stimulation: Imaging on a group level. NeuroImage 219, 117018 (2020).
pubmed: 32505698 doi: 10.1016/j.neuroimage.2020.117018
Horn, A. et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 184, 293–316 (2019).
pubmed: 30179717 doi: 10.1016/j.neuroimage.2018.08.068
Neudorfer, C. et al. Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. NeuroImage 268, 119862 (2023).
pubmed: 36610682 doi: 10.1016/j.neuroimage.2023.119862
Irmen, F. et al. Left prefrontal impact links subthalamic stimulation with depressive symptoms. Ann. Neurol. https://doi.org/10.1002/ana.25734 (2020).
doi: 10.1002/ana.25734 pubmed: 32239535
Al-Fatly, B. et al. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain J. Neurol. 18, 130 (2019).
Horn, A. et al. Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc. Natl Acad. Sci. 119, e2114985119 (2022).
pubmed: 35357970 pmcid: 9168456 doi: 10.1073/pnas.2114985119
Hollunder, B. et al. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat. Neurosci. 27, 573–586 (2024).
pubmed: 38388734 pmcid: 10917675 doi: 10.1038/s41593-024-01570-1
Hollunder, B. et al. Toward personalized medicine in connectomic deep brain stimulation. Prog. Neurobiol. 210, 102211 (2022).
pubmed: 34958874 doi: 10.1016/j.pneurobio.2021.102211
Middlebrooks, E. H. et al. Neuroimaging advances in deep brain stimulation: review of indications, anatomy, and brain connectomics. Am. J. Neuroradiol. 41, 1558–1568 (2020).
pubmed: 32816768 pmcid: 7583111 doi: 10.3174/ajnr.A6693
Baldermann, J. C. et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 85, 735–743 (2019).
pubmed: 30777287 doi: 10.1016/j.biopsych.2018.12.019
Coenen, V. A. et al. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir. (Wien.) 18, 130–14 (2020).
Helmich, R. C., Janssen, M. J. R., Oyen, W. J. G., Bloem, B. R. & Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann. Neurol. 69, 269–281 (2011).
pubmed: 21387372 doi: 10.1002/ana.22361
Helmich, R. C., Hallett, M., Deuschl, G., Toni, I. & Bloem, B. R. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?. Brain J. Neurol. 135, 3206–3226 (2012).
doi: 10.1093/brain/aws023
Kühn, A. A. et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 215, 380–387 (2009).
pubmed: 19070616 doi: 10.1016/j.expneurol.2008.11.008
Mazzone, P., Sposato, S., Insola, A. & Scarnati, E. The clinical effects of deep brain stimulation of the pedunculopontine tegmental nucleus in movement disorders may not be related to the anatomical target, leads location, and setup of electrical stimulation. Neurosurgery 73, 894 (2013).
pubmed: 23867299 doi: 10.1227/NEU.0000000000000108
Zrinzo, L. et al. Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131, 1588–1598 (2008).
pubmed: 18467343 doi: 10.1093/brain/awn075
Golestanirad, L., Elahi, B., Graham, S. J., Das, S. & Wald, L. L. Efficacy and Safety of Pedunculopontine Nuclei (PPN) Deep Brain Stimulation in the Treatment of Gait Disorders: A Meta-Analysis of Clinical Studies. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 43, 120–126 (2016).
doi: 10.1017/cjn.2015.318
Vorwerk, J., Oostenveld, R., Piastra, M. C., Magyari, L. & Wolters, C. H. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed. Eng. OnLine 17, 37 (2018).
pubmed: 29580236 pmcid: 5870695 doi: 10.1186/s12938-018-0463-y
Butenko, K., Bahls, C., Schröder, M., Köhling, R. & van Rienen, U. OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling. PLoS Comput. Biol. 16, e1008023 (2020).
pubmed: 32628719 pmcid: 7384674 doi: 10.1371/journal.pcbi.1008023
Dembek, T. A. et al. Directional DBS increases side‐effect thresholds—A prospective, double‐blind trial. Mov. Disord. 32, 1380–1388 (2017).
pubmed: 28843009 doi: 10.1002/mds.27093
Timmermann, L. et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 14, 693–701 (2015).
pubmed: 26027940 doi: 10.1016/S1474-4422(15)00087-3
Roediger, J. et al. Automated deep brain stimulation programming based on electrode location: a randomised, crossover trial using a data-driven algorithm. Lancet Digit. Health 5, e59–e70 (2023).
pubmed: 36528541 doi: 10.1016/S2589-7500(22)00214-X
Roediger, J. et al. StimFit—a data-driven algorithm for automated deep brain stimulation programming. Mov. Disord. 37, 574–584 (2022).
pubmed: 34837245 doi: 10.1002/mds.28878
Makris, N. et al. Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav. 10, 1054–1067 (2016).
pubmed: 26518214 pmcid: 4851930 doi: 10.1007/s11682-015-9462-9
Lujan, J. L. et al. Tractography-Activation Models Applied to Subcallosal Cingulate Deep Brain Stimulation. Brain Stimul. 6, 737–739 (2013).
pubmed: 23602025 pmcid: 3772993 doi: 10.1016/j.brs.2013.03.008
Coenen, V. A. et al. Machine learning—aided personalized DTI tractographic planning for deep brain stimulation of the superolateral medial forebrain bundle using HAMLET. Acta Neurochir. (Wien.) 161, 1559–1569 (2019).
pubmed: 31144167 doi: 10.1007/s00701-019-03947-9
Hollunder, B., Ganos, C. & Horn, A. Deep Brain Stimulation: From Sweet Spots to Sweet Networks? Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 939–941 (2021).
pubmed: 34625219
Merk, T. et al. Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Exp. Neurol. 351, 113993 (2022).
pubmed: 35104499 pmcid: 10521329 doi: 10.1016/j.expneurol.2022.113993
Horn, A. et al. Teaching NeuroImages: In vivo visualization of Edinger comb and Wilson pencils. Neurology 92, e1663–e1664 (2019).
pubmed: 30936236 pmcid: 6448452 doi: 10.1212/WNL.0000000000007252
Alho, E. J. L. et al. The Ansa Subthalamica: A Neglected Fiber Tract. Mov. Disord. 35, 75–80 (2020).
pubmed: 31758733 doi: 10.1002/mds.27901
Petersen, M. V. et al. Holographic Reconstruction of Axonal Pathways in the Human Brain. Neuron 104, 1056–1064.e3 (2019).
pubmed: 31708306 pmcid: 6948195 doi: 10.1016/j.neuron.2019.09.030
Horn, A. et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain J. Neurol. 18, 130–15 (2019).
Wang, Q. et al. Normative vs. patient-specific brain connectivity in deep brain stimulation. NeuroImage 224, 117307 (2020).
pubmed: 32861787 doi: 10.1016/j.neuroimage.2020.117307
Horn, A. & Fox, M. D. Opportunities of Connectomic Neuromodulation. NeuroImage 117180 (2020) https://doi.org/10.1016/j.neuroimage.2020.117180 .
Ewert, S. et al. Optimization and comparative evaluation of nonlinear deformation algorithms for atlas-based segmentation of DBS target nuclei. NeuroImage 184, 586–598 (2019).
pubmed: 30267856 doi: 10.1016/j.neuroimage.2018.09.061
Oxenford, S. et al. WarpDrive: Improving spatial normalization using manual refinements. Med. Image Anal. 91, 103041 (2024).
pubmed: 38007978 doi: 10.1016/j.media.2023.103041
Schönecker, T., Kupsch, A., Kühn, A. A., Schneider, G.-H. & Hoffmann, K.-T. Automated optimization of subcortical cerebral MR imaging−atlas coregistration for improved postoperative electrode localization in deep brain stimulation. Am. J. Neuroradiol. 30, 1914–1921 (2009).
pubmed: 19713324 pmcid: 7051288 doi: 10.3174/ajnr.A1741
Husch, A., V. Petersen, M., Gemmar, P., Goncalves, J. & Hertel, F. PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. NeuroImage Clin. 17, 80–89 (2018).
pubmed: 29062684 doi: 10.1016/j.nicl.2017.10.004
Lofredi, R. et al. Interrater reliability of deep brain stimulation electrode localizations. NeuroImage 262, 119552 (2022).
pubmed: 35981644 doi: 10.1016/j.neuroimage.2022.119552
Gunalan, K. et al. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example. PLOS ONE 12, e0176132 (2017).
pubmed: 28441410 pmcid: 5404874 doi: 10.1371/journal.pone.0176132
Howell, B. & McIntyre, C. C. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation. J. Neural Eng. 13, 036023 (2016).
pubmed: 27172137 pmcid: 5259803 doi: 10.1088/1741-2560/13/3/036023
Åström, M. et al. Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med. Biol. Eng. Comput. 47, 21–28 (2009).
Horn, A. & Kühn, A. A. Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage 107, 127–135 (2015).
pubmed: 25498389 doi: 10.1016/j.neuroimage.2014.12.002
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
pubmed: 17659998 doi: 10.1016/j.media.2007.06.004
Ewert, S. et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. NeuroImage 170, 271–282 (2018).
pubmed: 28536045 doi: 10.1016/j.neuroimage.2017.05.015
Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry 77, 534–540 (2020).
Butenko, K. et al. Linking profiles of pathway activation with clinical motor improvements – A retrospective computational study. NeuroImage Clin. 36, 103185 (2022).
pubmed: 36099807 pmcid: 9474565 doi: 10.1016/j.nicl.2022.103185
Zhang, S. & Arfanakis, K. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. NeuroImage 172, 40–50 (2018).
pubmed: 29414497 doi: 10.1016/j.neuroimage.2018.01.046
Butson, C. R. & McIntyre, C. C. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 116, 2490–2500 (2005).
pubmed: 16125463 doi: 10.1016/j.clinph.2005.06.023
McIntyre, C. C., Richardson, A. G. & Grill, W. M. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J. Neurophysiol. 87, 995–1006 (2002).
pubmed: 11826063 doi: 10.1152/jn.00353.2001
Fox, C. A., Rafols, J. A. & Cowan, W. M. Computer measurements of axis cylinder diameters of radial fibers and “comb” bundle fibers. J. Comp. Neurol. 159, 201–223 (1975).
pubmed: 803515 doi: 10.1002/cne.901590204
Mathai, A., Wichmann, T. & Smith, Y. More than meets the Eye—Myelinated axons crowd the subthalamic nucleus. Mov. Disord. 28, 1811–1815 (2013).
pubmed: 23852565 doi: 10.1002/mds.25603
Verhaart, W. J. C. Fiber analysis of the basal ganglia. J. Comp. Neurol. 93, 425–440 (1950).
pubmed: 14803571 doi: 10.1002/cne.900930307
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
pubmed: 17695343 doi: 10.3758/BF03193146
Schmitz-Hübsch, T. The caudal zona incerta does not prove suitable as a target for deep brain stimulation in Parkinson’s disease. J. Neurol. 267, 591–606 (2014).
Coulombe, V. et al. A Topographic Atlas of the Human Brainstem in the Ponto-Mesencephalic Junction Plane. Front. Neuroanat. 15, 627656 (2021).
pubmed: 34483849 pmcid: 8414831 doi: 10.3389/fnana.2021.627656

Auteurs

Nanditha Rajamani (N)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. nrajamani@bwh.harvard.edu.

Helen Friedrich (H)

Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
University of Würzburg, Faculty of Medicine, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.

Konstantin Butenko (K)

Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.

Till Dembek (T)

Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Neurology, University of Cologne, Cologne, Germany.

Florian Lange (F)

Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

Pavel Navrátil (P)

Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

Patricia Zvarova (P)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Einstein Center Digital Future, Berlin, 10117, Germany.

Barbara Hollunder (B)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Einstein Center Digital Future, Berlin, 10117, Germany.
Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany.

Rob M A de Bie (RMA)

Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands.

Vincent J J Odekerken (VJJ)

Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands.

Jens Volkmann (J)

Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

Xin Xu (X)

Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China.

Zhipei Ling (Z)

Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, 572000, China.

Chen Yao (C)

Department of Neurosurgery, The National Key Clinic Specialty, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.

Petra Ritter (P)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Einstein Center Digital Future, Berlin, 10117, Germany.
Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany.
Bernstein center for Computational Neuroscience Berlin, Berlin, 10117, Germany.

Wolf-Julian Neumann (WJ)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Georgios P Skandalakis (GP)

Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece.

Spyridon Komaitis (S)

Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece.
Centre for Spinal Studies and Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK.

Aristotelis Kalyvas (A)

Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece.
Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.

Christos Koutsarnakis (C)

Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece.

George Stranjalis (G)

Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens, Greece.

Michael Barbe (M)

Department of Neurology, University of Cologne, Cologne, Germany.

Vanessa Milanese (V)

Neurosurgical Division, Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
Department of Neurosurgery, Mayo Clinic, Florida, USA.
Movement Disorders and Neuromodulation Unit, DOMMO Clinic, São Paulo, Brazil.

Michael D Fox (MD)

Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Harvard Medical School, Boston, MA, 02114, USA.
Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA.

Andrea A Kühn (AA)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Einstein Center Digital Future, Berlin, 10117, Germany.
Brain Simulation Section, Department of Neurology, Charité University Medicine Berlin and Berlin Institute of Health, Berlin, 10117, Germany.

Erik Middlebrooks (E)

Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA.

Ningfei Li (N)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Martin Reich (M)

Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

Clemens Neudorfer (C)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Harvard Medical School, Boston, MA, 02114, USA.
Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA.

Andreas Horn (A)

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Harvard Medical School, Boston, MA, 02114, USA.
Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH