Transgenerational effects of early life stress on the fecal microbiota in mice.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
31 May 2024
Historique:
received: 09 11 2023
accepted: 02 05 2024
medline: 1 6 2024
pubmed: 1 6 2024
entrez: 31 5 2024
Statut: epublish

Résumé

Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.

Identifiants

pubmed: 38822061
doi: 10.1038/s42003-024-06279-2
pii: 10.1038/s42003-024-06279-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

670

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 31003A_175742/1
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 182880/Phase 2
Organisme : Eidgenössische Technische Hochschule Zürich (Federal Institute of Technology Zurich)
ID : ETH-10 15-2
Organisme : Eidgenössische Technische Hochschule Zürich (Federal Institute of Technology Zurich)
ID : ETH-17 13-2
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 848158

Informations de copyright

© 2024. The Author(s).

Références

Nelson, C. A., Zeanah, C. H. & Fox, N. A. How early experience shapes human development: the case of psychosocial deprivation. Neural. Plast. 2019, 1–12 (2019).
doi: 10.1155/2019/1676285
Ratsika, A., Codagnone, M. C., O’Mahony, S., Stanton, C. & Cryan, J. F. Priming for life: early life nutrition and the microbiota-gut-brain axis. Nutrients 13, 423 (2021).
pubmed: 33525617 pmcid: 7912058 doi: 10.3390/nu13020423
Gershon, A., Sudheimer, K., Tirouvanziam, R., Williams, L. M. & O’Hara, R. The long-term impact of early adversity on late-life psychiatric disorders. Curr. Psychiatry Rep. 15, 352 (2013).
pubmed: 23443532 doi: 10.1007/s11920-013-0352-9
McEwen, B. S. Understanding the potency of stressful early life experiences on brain and body function. Metabolism 57, 11–15 (2008).
doi: 10.1016/j.metabol.2008.07.006
Bowers, M. E. & Yehuda, R. Intergenerational transmission of stress in humans. Neuropsychopharmacology 41, 232–244 (2016).
pubmed: 26279078 doi: 10.1038/npp.2015.247
Jawaid, A., Jehle, K.-L. & Mansuy, I. M. Impact of parental exposure on offspring health in humans. Trends Genet. 37, 373–388 (2021).
pubmed: 33189388 doi: 10.1016/j.tig.2020.10.006
Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).
pubmed: 15220929 doi: 10.1038/nn1276
Boscardin, C., Manuella, F. & Mansuy, I. M. Paternal transmission of behavioural and metabolic traits induced by postnatal stress to the 5th generation in mice. Environ. Epigenet. 8, dvac024 (2022).
pubmed: 36518875 pmcid: 9730319 doi: 10.1093/eep/dvac024
van Steenwyk, G., Roszkowski, M., Manuella, F., Franklin, T. B. & Mansuy, I. M. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ. Epigenet 4, dvy023 (2018).
pubmed: 30349741 pmcid: 6190267
Zhou, A. & Ryan, J. Biological embedding of early-life adversity and a scoping review of the evidence for intergenerational epigenetic transmission of stress and trauma in humans. Genes 14, 1639 (2023).
pubmed: 37628690 pmcid: 10454883 doi: 10.3390/genes14081639
Querdasi, F. R. et al. Multigenerational adversity impacts on human gut microbiome composition and socioemotional functioning in early childhood. PNAS 120, e2213768120 (2023).
pubmed: 37463211 pmcid: 10372691 doi: 10.1073/pnas.2213768120
Clarke, G., O’Mahony, S. M., Dinan, T. G. & Cryan, J. F. Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr. 103, 812–819 (2014).
pubmed: 24798884 doi: 10.1111/apa.12674
O’Riordan, K. J. et al. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell Endocrinol. 546, 111572 (2022).
pubmed: 35066114 doi: 10.1016/j.mce.2022.111572
Mazzoli, R. & Pessione, E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front. Microbiol 7, 1–17 (2016).
doi: 10.3389/fmicb.2016.01934
Jena, A. et al. Gut-brain axis in the early postnatal years of life: a developmental perspective. Front. Integr. Neurosci. 14, 1–18 (2020).
doi: 10.3389/fnint.2020.00044
De Palma, G. et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735 (2015).
pubmed: 26218677 doi: 10.1038/ncomms8735
Hantsoo, L. & Zemel, B. S. Stress gets into the belly: Early life stress and the gut microbiome. Behav. Brain Res. 414, 113474 (2021).
pubmed: 34280457 pmcid: 8380711 doi: 10.1016/j.bbr.2021.113474
Kemp, K. M., Colson, J., Lorenz, R. G., Maynard, C. L. & Pollock, J. S. Early life stress in mice alters gut microbiota independent of maternal microbiota inheritance. Am. J. Physiol. Integr. Comp. Physiol. 320, R663–R674 (2021).
doi: 10.1152/ajpregu.00072.2020
Coley, E. J. L. et al. Early life adversity predicts brain-gut alterations associated with increased stress and mood. Neurobiol. Stress 15, 100348 (2021).
pubmed: 34113697 pmcid: 8170500 doi: 10.1016/j.ynstr.2021.100348
Callaghan, B. L. et al. Mind and gut: associations between mood and gastrointestinal distress in children exposed to adversity. Dev. Psychopathol. 32, 309–328 (2020).
pubmed: 30919798 doi: 10.1017/S0954579419000087
Flannery, J. E. et al. Gut feelings begin in childhood: the gut metagenome correlates with early environment, caregiving, and behavior. mBio 11, e02780–19 (2020).
pubmed: 31964729 pmcid: 6974564 doi: 10.1128/mBio.02780-19
Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).
pubmed: 20673872 doi: 10.1016/j.biopsych.2010.05.036
van Steenwyk, G. et al. Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO J. 39, e104579 (2020).
pubmed: 33034389 pmcid: 7705452 doi: 10.15252/embj.2020104579
Gapp, K. et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol. Psychiatry 25, 2162–2174 (2020).
pubmed: 30374190 doi: 10.1038/s41380-018-0271-6
Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
pubmed: 24728267 pmcid: 4333222 doi: 10.1038/nn.3695
Moloney, R. D. et al. Early-life stress induces visceral hypersensitivity in mice. Neurosci. Lett. 512, 99–102 (2012).
pubmed: 22326388 doi: 10.1016/j.neulet.2012.01.066
Skillington, O. et al. The contrasting human gut microbiota in early and late life and implications for host health and disease. Nutr. Healthy Aging 6, 157–178 (2021).
doi: 10.3233/NHA-210129
Salazar, N. et al. Microbiome: effects of ageing and diet. Curr. Issues Mol. Biol. 36, 33–62 (2020).
pubmed: 31558686 doi: 10.21775/cimb.036.033
Bergström, A. et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of danish infants. Appl Environ. Microbiol. 80, 2889–2900 (2014).
pubmed: 24584251 pmcid: 3993305 doi: 10.1128/AEM.00342-14
Low, A., Soh, M., Miyake, S. & Seedorf, H. Host age prediction from fecal microbiota composition in male C57BL/6J mice. Microbiol. Spectr. 10, e00735–22 (2022).
pubmed: 35674443 pmcid: 9241839 doi: 10.1128/spectrum.00735-22
Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).
pubmed: 25520805 pmcid: 4269096 doi: 10.1186/s40168-014-0050-9
You, X., Dadwal, U. C., Lenburg, M. E., Kacena, M. A. & Charles, J. F. Murine gut microbiome meta-analysis reveals alterations in carbohydrate metabolism in response to aging. mSystems 7, e01248–21 (2022).
pubmed: 35400171 pmcid: 9040766 doi: 10.1128/msystems.01248-21
Qu, Q. et al. Effects of heat stress on gut microbiome inrRats. Indian J. Microbiol. 61, 338–347 (2021).
pubmed: 34290462 pmcid: 8263838 doi: 10.1007/s12088-021-00948-0
Zhang, Y. et al. Acute cold water-immersion restraint stress induces intestinal injury and reduces the diversity of gut microbiota in mice. Front. Cell Infect. Microbiol. 11, 706849 (2021).
pubmed: 34722327 pmcid: 8551804 doi: 10.3389/fcimb.2021.706849
Kim, Y.-M. et al. Light-stress influences the composition of the murine gut microbiome, memory function, and plasma metabolome. Front. Mol. Biosci. 6, 108 (2019).
pubmed: 31681796 pmcid: 6813214 doi: 10.3389/fmolb.2019.00108
Bassett, S. A. et al. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci. Rep. 9, 14026 (2019).
pubmed: 31575902 pmcid: 6773725 doi: 10.1038/s41598-019-50593-3
Rao, J. et al. Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress‐induced depressive‐like behavior. Eur. J. Neurosci. 53, 3598–3611 (2021).
pubmed: 33742731 doi: 10.1111/ejn.15192
Seewoo, B. J. et al. Changes in the rodent gut microbiome following chronic restraint stress and low-intensity rTMS. Neurobiol. Stress 17, 100430 (2022).
pubmed: 35146078 pmcid: 8819474 doi: 10.1016/j.ynstr.2022.100430
Bridgewater, L. C. et al. Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Sci. Rep. 7, 10776 (2017).
pubmed: 28883460 pmcid: 5589737 doi: 10.1038/s41598-017-11069-4
Usui, N., Matsuzaki, H. & Shimada, S. Characterization of early life stress-affected gut microbiota. Brain Sci. 11, 913 (2021).
pubmed: 34356147 pmcid: 8306161 doi: 10.3390/brainsci11070913
Reemst, K. et al. The role of the gut microbiota in the effects of early-life stress and dietary fatty acids on later-life central and metabolic outcomes in mice. mSystems 7, e0018022 (2022).
pubmed: 35695433 doi: 10.1128/msystems.00180-22
Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).
pubmed: 27928878 doi: 10.1111/1462-2920.13589
Riba, A. et al. Early life stress in mice is a suitable model for irritable bowel syndrome but does not predispose to colitis nor increase susceptibility to enteric infections. Brain Behav. Immun. 73, 403–415 (2018).
pubmed: 29860025 doi: 10.1016/j.bbi.2018.05.024
Karen, C., Shyu, D. J. H. & Rajan, K. E. Lactobacillus paracasei supplementation prevents early life stress-induced anxiety and depressive-like behavior in maternal separation model-possible involvement of microbiota-gut-brain axis in differential regulation of microRNA124a/132 and glutamate Rec. Front .Neurosci. 15, 719933 (2021).
pubmed: 34531716 pmcid: 8438336 doi: 10.3389/fnins.2021.719933
Enqi, W., Jingzhu, S., Lingpeng, P. & Yaqin, L. Comparison of the gut microbiota disturbance in rat models of irritable bowel syndrome induced by maternal separation and multiple early-life adversity. Front. Cell Infect. Microbiol. 10, 581974 (2021).
pubmed: 33520732 pmcid: 7840688 doi: 10.3389/fcimb.2020.581974
Bidot, W. A., Ericsson, A. C. & Franklin, C. L. Effects of water decontamination methods and bedding material on the gut microbiota. PLoS One 13, e0198305 (2018).
pubmed: 30359379 pmcid: 6201873 doi: 10.1371/journal.pone.0198305
Ericsson, A. C. et al. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci. Rep. 8, 4065 (2018).
pubmed: 29511208 pmcid: 5840362 doi: 10.1038/s41598-018-21986-7
Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent models. Lab Anim. 46, 114–122 (2017).
doi: 10.1038/laban.1222
Nyangahu, D. D. et al. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome 6, 124 (2018).
pubmed: 29981583 pmcid: 6035804 doi: 10.1186/s40168-018-0511-7
Francella, C. et al. Microbe–immune–stress interactions impact behaviour during postnatal development. Int. J. Mol. Sci. 23, 15064 (2022).
pubmed: 36499393 pmcid: 9740388 doi: 10.3390/ijms232315064
Li, H. et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J. Neuroinflamm. 18, 254 (2021).
doi: 10.1186/s12974-021-02303-y
Kong, Q. et al. The autistic-like behaviors development during weaning and sexual maturation in VPA-induced autistic-like rats is accompanied by gut microbiota dysbiosis. PeerJ 9, e11103 (2021).
pubmed: 33986978 pmcid: 8101471 doi: 10.7717/peerj.11103
Park, H. J., Kim, S. A., Kang, W. S. & Kim, J. W. Early-life stress modulates gut microbiota and peripheral and central inflammation in a sex-dependent manner. Int. J. Mol. Sci. 22, 1899 (2021).
pubmed: 33672958 pmcid: 7918891 doi: 10.3390/ijms22041899
Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018).
pubmed: 28890155 doi: 10.1016/j.bbi.2017.09.001
Smith, B. J. et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 19, 130 (2019).
pubmed: 31195972 pmcid: 6567620 doi: 10.1186/s12866-019-1494-7
Moya, A. & Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 24, 402–413 (2016).
pubmed: 26996765 doi: 10.1016/j.tim.2016.02.002
den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
doi: 10.1194/jlr.R036012
van de Wouw, M. et al. The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain Behav. Immun. 84, 209–217 (2020).
pubmed: 31812778 doi: 10.1016/j.bbi.2019.12.003
Xu, C., Lee, S. K., Zhang, D. & Frenette, P. S. The gut microbiome regulates psychological-stress-induced inflammation. Immunity 53, 417–428.e4 (2020).
pubmed: 32735844 pmcid: 7461158 doi: 10.1016/j.immuni.2020.06.025
Lkhagva, E. et al. The regional diversity of gut microbiome along the GI tract of male C57BL/6 mice. BMC Microbiol. 21, 44 (2021).
pubmed: 33579191 pmcid: 7881553 doi: 10.1186/s12866-021-02099-0
Galley, J. D. et al. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 5, 748–760 (2014).
pubmed: 25536463 pmcid: 4615309 doi: 10.4161/19490976.2014.972241
Bohacek, J., von Werdt, S. & Mansuy, I. M. Probing the germline-dependence of epigenetic inheritance using artificial insemination in mice. Environ. Epigenet. 2, dvv015–dvv015 (2016).
pubmed: 29492284 pmcid: 5804514 doi: 10.1093/eep/dvv015
Otaru, N. et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front. Microbiol. 12, 656895 (2021).
pubmed: 33936013 pmcid: 8082179 doi: 10.3389/fmicb.2021.656895
Constancias, F. & Mahé, F. fconstancias/metabaRpipe: v0.9 (v0.9). Zenodo. https://doi.org/10.5281/zenodo.6423397 (2022).
Didion, J. P., Martin, M. & Collins, F. S. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).
pubmed: 28875074 pmcid: 5581536 doi: 10.7717/peerj.3720
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
R. Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022).
Oksanen, J. et al. vegan: community ecology package. https://CRAN.R-project.org/package=vegan (2020).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in {R}. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406 doi: 10.1093/bioinformatics/bty633
Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv (2018).
McLaren, M. speedyseq: faster implementations of phyloseq functions. https://github.com/mikemc/speedyseq (2021).
Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, 1–27 (2021).
doi: 10.1371/journal.pcbi.1009442
Constancias, F. & Sundar, S. fconstancias/DivComAnalyses: v0.9 (v0.9). Zenodo. https://doi.org/10.5281/zenodo.6473394 (2022).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313

Auteurs

Nize Otaru (N)

Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland.
Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.

Lola Kourouma (L)

Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland.
Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland.

Benoit Pugin (B)

Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.

Florentin Constancias (F)

Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.

Christian Braegger (C)

Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland.

Isabelle M Mansuy (IM)

Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland. mansuy@hifo.uzh.ch.
Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland. mansuy@hifo.uzh.ch.

Christophe Lacroix (C)

Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland. christophe.lacroix@hest.ethz.ch.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH