SARA captures disparate progression and responsiveness in spinocerebellar ataxias.
Clinical score
Natural history
Spinocerebellar ataxia
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
01 Jun 2024
01 Jun 2024
Historique:
received:
26
03
2024
accepted:
23
05
2024
revised:
22
05
2024
medline:
1
6
2024
pubmed:
1
6
2024
entrez:
1
6
2024
Statut:
aheadofprint
Résumé
The Scale for Assessment and Rating of Ataxia (SARA) is a widely used clinical scale to assess cerebellar ataxia but faces some criticisms about the relevancy of all its items. To prepare for future clinical trials, we analyzed the progression of SARA and its items in several polyQ spinocerebellar ataxias (SCA) from various cohorts. We included data from patients with SCA1, SCA2, SCA3, and SCA6 from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) for a total of 850 carriers and 3431 observations. Longitudinal progression of the SARA and its items was measured. Cohort, stage and genetic effects were tested. We looked at the respective contribution of each item to the total scale. Sensitivity to change of the scale and the impact of item removal was evaluated by calculating sample sizes needed in various scenarios. Longitudinal progression was significantly different between cohorts in SCA1, SCA2 and SCA3, the EUROSCA cohort having the fastest progression. Advanced-stage patients were progressing slower in SCA2 and SCA6. Items were not contributing equally to the full scale through ataxia severity: gait, stance, hand movement, and heel-shin contributed the most in the early stage, and finger-chase, nose-finger, and sitting in later stages. Few items drove the sensitivity to the change of SARA, but changes in the scale structure could not improve its sensitivity in all populations. SARA and its item's progression pace showed high heterogeneity across cohorts and SCAs. However, no combinations of items improved the responsiveness in all SCAs or populations taken separately.
Sections du résumé
BACKGROUND
BACKGROUND
The Scale for Assessment and Rating of Ataxia (SARA) is a widely used clinical scale to assess cerebellar ataxia but faces some criticisms about the relevancy of all its items.
OBJECTIVES
OBJECTIVE
To prepare for future clinical trials, we analyzed the progression of SARA and its items in several polyQ spinocerebellar ataxias (SCA) from various cohorts.
METHODS
METHODS
We included data from patients with SCA1, SCA2, SCA3, and SCA6 from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) for a total of 850 carriers and 3431 observations. Longitudinal progression of the SARA and its items was measured. Cohort, stage and genetic effects were tested. We looked at the respective contribution of each item to the total scale. Sensitivity to change of the scale and the impact of item removal was evaluated by calculating sample sizes needed in various scenarios.
RESULTS
RESULTS
Longitudinal progression was significantly different between cohorts in SCA1, SCA2 and SCA3, the EUROSCA cohort having the fastest progression. Advanced-stage patients were progressing slower in SCA2 and SCA6. Items were not contributing equally to the full scale through ataxia severity: gait, stance, hand movement, and heel-shin contributed the most in the early stage, and finger-chase, nose-finger, and sitting in later stages. Few items drove the sensitivity to the change of SARA, but changes in the scale structure could not improve its sensitivity in all populations.
CONCLUSION
CONCLUSIONS
SARA and its item's progression pace showed high heterogeneity across cohorts and SCAs. However, no combinations of items improved the responsiveness in all SCAs or populations taken separately.
Identifiants
pubmed: 38822840
doi: 10.1007/s00415-024-12475-1
pii: 10.1007/s00415-024-12475-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NINDS NIH HHS
ID : U01 NS104326
Pays : United States
Informations de copyright
© 2024. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, Ying SH, Zesiewicz TA, Paulson HL, Shakkottai VG, Bushara KO, Kuo S-H, Geschwind MD, Xia G, Mazzoni P, Krischer JP, Cuthbertson D, Holbert A, Ferguson JH, Pulst SM, Subramony S (2013) Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 8:177. https://doi.org/10.1186/1750-1172-8-177
doi: 10.1186/1750-1172-8-177
pubmed: 24225362
pmcid: 3843578
Chandrasekaran J, Petit E, Park Y-W, Tezenas du Montcel S, Joers JM, Povazan M, Banan G, Valabregue R (2022) Clinically meaningful MR endpoints sensitive to preataxic and early ataxic stages of SCA1 and SCA3. Ann Neurol 93(4):686–701
doi: 10.1002/ana.26573
pubmed: 36511514
pmcid: 10261544
Choi J-H, Shin C, Kim H-J, Jeon B (2022) Placebo response in degenerative cerebellar ataxias: a descriptive review of randomized, placebo-controlled trials. J Neurol 269:62–71. https://doi.org/10.1007/s00415-020-10306-7
doi: 10.1007/s00415-020-10306-7
pubmed: 33219422
Coarelli G, Coutelier M, Durr A (2023) Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 22:735–749. https://doi.org/10.1016/S1474-4422(23)00068-6
doi: 10.1016/S1474-4422(23)00068-6
pubmed: 37479376
Coarelli G, Heinzmann A, Ewenczyk C, Fischer C, Chupin M, Monin M-L, Hurmic H, Calvas F, Calvas P, Goizet C, Thobois S, Anheim M, Nguyen K, Devos D, Verny C, Ricigliano VAG, Mangin J-F, Brice A, Tezenas du Montcel S, Durr A (2022) Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 21:225–233. https://doi.org/10.1016/S1474-4422(21)00457-9
doi: 10.1016/S1474-4422(21)00457-9
pubmed: 35063116
Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T (2020) Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. J Neurol. https://doi.org/10.1007/s00415-020-09815-2
doi: 10.1007/s00415-020-09815-2
pubmed: 32266540
Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894. https://doi.org/10.1016/S1474-4422(10)70183-6
doi: 10.1016/S1474-4422(10)70183-6
pubmed: 20723845
Faber J, Berger M, Carlo W, Hübener-Schmid J, Schaprian T, Santana MM, Grobe-Einsler M, Onder D, Koyak B, Giunti P, Garcia-Moreno H, Gonzalez-Robles C, Lima M, Raposo M, Vieira Melo AR, De Almeida LP, Silva P, Pinto MM, Van De Warrenburg BP, Van Gaalen J, Jeroen De Vries J, Oz G, Joers JM, Synofzik M, Schöls L, Riess O, Infante J, Manrique L, Timmann D, Thieme A, Jacobi H, Reetz K, Dogan I, Onyike C, Povazan M, Schmahmann J, Ratai E-M, Schmid M, Klockgether T (2023) Stage-dependent biomarker changes in spinocerebellar ataxia type 3 (preprint). Neurology. https://doi.org/10.1101/2023.04.21.23287817
doi: 10.1101/2023.04.21.23287817
pubmed: 37076309
pmcid: 10136009
Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Dürr A, Marelli C, Globas C, Linnemann C (2011) The natural history of spinocerebellar ataxia type 1, 2, 3, and 6 A 2-year follow-up study. Neurology 77:1035–1041
doi: 10.1212/WNL.0b013e31822e7ca0
pubmed: 21832228
pmcid: 3174068
Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, Panzeri M, Rakowicz M, Sulek A, Sobanska A, Schmitz-Hübsch T, Schöls L, Hengel H, Baliko L, Melegh B, Filla A, Antenora A, Infante J, Berciano J, van de Warrenburg BP, Timmann D, Szymanski S, Boesch S, Kang J-S, Pandolfo M, Schulz JB, Molho S, Diallo A, Klockgether T (2015) Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 14:1101–1108. https://doi.org/10.1016/S1474-4422(15)00202-1
doi: 10.1016/S1474-4422(15)00202-1
pubmed: 26377379
Jacobi H, du Montcel ST, Romanzetti S, Harmuth F, Mariotti C, Nanetti L, Rakowicz M, Makowicz G, Durr A, Monin M-L, Filla A, Roca A, Schöls L, Hengel H, Infante J, Kang J-S, Timmann D, Casali C, Masciullo M, Baliko L, Melegh B, Nachbauer W, Bürk-Gergs K, Schulz JB, Riess O, Reetz K, Klockgether T (2020) Conversion of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia (RISCA): a longitudinal cohort study. Lancet Neurol 19:738–747. https://doi.org/10.1016/S1474-4422(20)30235-0
doi: 10.1016/S1474-4422(20)30235-0
pubmed: 32822634
Monin M, Tezenas Du Montcel S, Marelli C, Cazeneuve C, Charles P, Tallaksen C, Forlani S, Stevanin G, Brice A, Durr A (2015) Survival and severity in dominant cerebellar ataxias. Ann Clin Transl Neurol 2:202–207. https://doi.org/10.1002/acn3.156
doi: 10.1002/acn3.156
pubmed: 25750924
pmcid: 4338960
Peng L, Chen Z, Long Z, Liu M, Lei L, Wang C, Peng H, Shi Y, Peng Y, Deng Q, Wang S, Zou G, Wan L, Yuan H, He L, Xie Y, Tang Z, Wan N, Gong Y, Hou X, Shen L, Xia K, Li J, Chen C, Qiu R, Klockgether T, Tang B, Jiang H (2021) New model for estimation of the age at onset in spinocerebellar ataxia type 3. Neurology 96:e2885–e2895. https://doi.org/10.1212/WNL.0000000000012068
doi: 10.1212/WNL.0000000000012068
pubmed: 33893204
R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801
doi: 10.1159/000358801
pubmed: 24603320
Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang J-S, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92
doi: 10.1212/01.wnl.0000219042.60538.92
pubmed: 16769946
Tezenas-du-Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M, Schöls L, Mariotti C, van de Warrenburg BPC, Orsi L, Giunti P, Filla A, Szymanski S, Klockgether T, Berciano J, Pandolfo M, Boesch S, Melegh B, Timmann D, Mandich P, Camuzat A, Clinical Research Consortium for Spinocerebellar Ataxia (CRC-SCA), EUROSCA network, Goto J, Ashizawa T, Cazeneuve C, Tsuji S, Pulst S-M, Brusco A, Riess O, Brice A, Stevanin G (2014) Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain J Neurol 137:2444–2455. https://doi.org/10.1093/brain/awu174
doi: 10.1093/brain/awu174
Tezenas Du Montcel S, Petit E, Olubajo T, Faber J, Lallemant-Dudek P, Bushara K, Perlman S, Subramony SH, Morgan D, Jackman B, Paulson HL, Öz G, Klockgether T, Durr A, Ashizawa T, for the READISCA Consortium Collaborators (2023) Baseline clinical and blood biomarkers in patients with preataxic and early-stage disease spinocerebellar ataxia 1 and 3. Neurology 100:e1836–e1848. https://doi.org/10.1212/WNL.0000000000207088
doi: 10.1212/WNL.0000000000207088
pubmed: 36797067
pmcid: 10136009
Traschütz A, Adarmes-Gómez AD, Anheim M, Baets J, Brais B, Gagnon C, Gburek-Augustat J, Doss S, Hanağası HA, Kamm C, Klivenyi P, Klockgether T, Klopstock T, Minnerop M, Münchau A, Renaud M, Santorelli FM, Schöls L, Thieme A, Vielhaber S, Van De Warrenburg BP, Zanni G, Hilgers R, PREPARE Consortium, Synofzik M (2023) Responsiveness of the scale for the assessment and rating of ataxia and natural history in 884 recessive and early onset ataxia patients. Ann Neurol. https://doi.org/10.1002/ana.26712
doi: 10.1002/ana.26712
pubmed: 37243847