Comparative evaluation of six commercial adult toothpaste formulations reveals cytotoxicity and altered functions in a human oral melanocyte model: an in vitro study.

Adult toothpaste Cytotoxicity Gingiva Melanogenesis Primary human melanocytes Reactive oxygen species Tyrosinase

Journal

Odontology
ISSN: 1618-1255
Titre abrégé: Odontology
Pays: Japan
ID NLM: 101134822

Informations de publication

Date de publication:
01 Jun 2024
Historique:
received: 24 01 2024
accepted: 20 05 2024
medline: 1 6 2024
pubmed: 1 6 2024
entrez: 1 6 2024
Statut: aheadofprint

Résumé

This study aims to compare six commercial adult toothpaste (labeled as A, B, C, D, E, and F) for cytotoxicity and melanocyte function alterations in vitro using primary human epidermal melanocytes from a Caucasian donor (HEMn-LP cells) as a model of oral melanocytes. Cells were incubated with toothpaste extracts (50% w/v) in culture media at dilutions (1:25, 1:50, 1:100, 1:200, 1:500, 1:800, and 1:1000) for 24 h. MTS and LDH assays were used to assess cytotoxicity. The effects of noncytotoxic toothpaste concentrations on melanocyte functional endpoints were then examined using spectrophotometric methods. All toothpaste showed concentration-dependent cytotoxicity that was heterogeneous across toothpaste containing SLS detergent. IC

Identifiants

pubmed: 38822982
doi: 10.1007/s10266-024-00957-7
pii: 10.1007/s10266-024-00957-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to The Society of The Nippon Dental University.

Références

Kane SF. The effects of oral health on systemic health. Gen Dent. 2017;65:30–4.
pubmed: 29099363
Alpert PT. Oral health: the oral-systemic health connection. Home Health Care Manag Pract. 2017;29:56–9.
doi: 10.1177/1084822316651658
Montebugnoli L, Servidio D, Miaton R, et al. Poor oral health is associated with coronary heart disease and elevated systemic inflammatory and haemostatic factors. J Clin Periodontol. 2004;31:25–9.
pubmed: 15058371 doi: 10.1111/j.0303-6979.2004.00432.x
Seymour G. Good oral health is essential for good general health: the oral-systemic connection. Clin Microbiol Infect. 2007;13:1–2.
doi: 10.1111/j.1469-0691.2007.01797.x
Seneviratne CJ, Zhang CF, Samaranayake LP. Dental plaque biofilm in oral health and disease. Chin J Dent Res. 2011;14:87.
pubmed: 22319749
Lo H, Theilade E, Jensen S. Experimental gingivitis in man. J Periodontol. 1965;36:177.
doi: 10.1902/jop.1965.36.3.177
Kumar S, Tadakamadla J, Johnson N. Effect of toothbrushing frequency on incidence and increment of dental caries: a systematic review and meta-analysis. J Dent Res. 2016;95:1230–6.
pubmed: 27334438 doi: 10.1177/0022034516655315
Addy M, Hunter M. Can tooth brushing damage your health? Effects on oral and dental tissues. Int Dent J. 2003;53:177–86.
pubmed: 12875306 doi: 10.1111/j.1875-595X.2003.tb00768.x
Claydon NC. Current concepts in toothbrushing and interdental cleaning. Periodontology. 2000;2008(48):10–22.
Davies R, Scully C, Preston AJ. Dentifrices: an update. Med Oral Patol Oral Cir Bucal. 2010;15(6):976–82.
doi: 10.4317/medoral.15.e976
Barrett A, Scully C. Human oral mucosal melanocytes: a review. J Oral Pathol Med. 1994;23:97–103.
pubmed: 8021847 doi: 10.1111/j.1600-0714.1994.tb01095.x
Jimbow K. Biology of melanocytes. Dermatol Gen Med. 1999. 192–220.
Gaeta GM, Satriano RA, Baroni A. Oral pigmented lesions. Clin Dermatol. 2002;20:286–8.
pubmed: 12074869 doi: 10.1016/S0738-081X(02)00225-0
Mason HS. The chemistry of melanin: III mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. J Bio Chem. 1948;172:83–99.
doi: 10.1016/S0021-9258(18)35614-X
Mackintosh JA. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Bio. 2001;211:101–13.
doi: 10.1006/jtbi.2001.2331
Płonka P, Grabacka M. Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochimica Polonica. 2006;53:3.
doi: 10.18388/abp.2006_3314
Lu Y, Zhu WY, Tan C, Yu GH, Gu JX. Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes. Pigment Cell Res. 2002;15:454–60.
pubmed: 12453188 doi: 10.1034/j.1600-0749.2002.02065.x
Nilima S, Vandana K. Melanin: a scavenger in gingival inflammation. Ind J Dent Res. 2011;22:38.
doi: 10.4103/0970-9290.79973
ElObeid AS, Kamal-Eldin A, Abdelhalim MA, Haseeb AM. Pharmacological properties of melanin and its function in health. Basic Clin Pharmacol Toxicol. 2017;120:515–22.
pubmed: 28027430 doi: 10.1111/bcpt.12748
Goenka S, Lee H-M. Effect of commercial children’s mouthrinses and toothpastes on the viability of neonatal human melanocytes: an in vitro study. Dent J. 2023;11:287.
doi: 10.3390/dj11120287
Eisen D. Disorders of pigmentation in the oral cavity. Clin Dermatol. 2000;18:579–87.
pubmed: 11134853 doi: 10.1016/S0738-081X(00)00148-6
Soames J. The morphology and quantitative distribution of dopa-positive melanocytes in the gingival epithelium of caucasians. Oral Surg Oral Med Oral Pathol. 1974;38:254–8.
pubmed: 4528796 doi: 10.1016/0030-4220(74)90064-4
Wallstrom M, Sand L, Nilsson F, Hirsch JM. The long-term effect of nicotine on the oral mucosa. Addiction. 1999;94:417–23.
pubmed: 10605870 doi: 10.1046/j.1360-0443.1999.94341711.x
Nakamura M, Ueda Y, Hayashi M, et al. Tobacco smoke-induced skin pigmentation is mediated by the aryl hydrocarbon receptor. Exp Dermatol. 2013;22:556–8.
pubmed: 23802610 doi: 10.1111/exd.12170
Hedin CA, Axell T. oral melanin pigmentation in 467 thai and malaysian people with special emphasis on smoker’s melanosis. J Oral Pathol Med. 1991;20:8–12.
pubmed: 2002444 doi: 10.1111/j.1600-0714.1991.tb00879.x
Goenka S. Sepia melanin-loaded primary human gingival keratinocytes: an in vitro model for studies on pigmented gingiva. Oral. 2023;3:254–65.
doi: 10.3390/oral3020021
Riss T, Niles A, Moravec R, Karassina N, Vidugiriene J. Cytotoxicity assays: in vitro methods to measure dead cells. Assay guidance manual [Internet]. 2019.
Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.
pubmed: 6199426 doi: 10.1016/0022-1759(83)90438-6
Goenka S. Biological impact of the ratio of E-cigarette liquid base constituents, propylene glycol and vegetable glycerin on prim hum melanocytes. Oral. 2023;3:40–56.
doi: 10.3390/oral3010005
Goenka S. Novel hydrogenated derivatives of chemically modified curcumin cmc2. 24 are potent inhibitors of melanogenesis in an in vitro model: influence of degree of hydrogenation. Life. 2023;13:1373.
pubmed: 37374155 pmcid: 10304319 doi: 10.3390/life13061373
Cvikl B, Lussi A, Gruber R. The in vitro impact of toothpaste extracts on cell viability. Eur J Oral Sci. 2015;123:179–85.
pubmed: 25782087 doi: 10.1111/eos.12177
Birant S, Duran Y, Akkoc T, Seymen F. Cytotoxic effects of different detergent containing children’s toothpastes on human gingival epithelial cells. BMC Oral Health. 2022;22:1–16.
doi: 10.1186/s12903-022-02089-2
Camargo SEA, Milhan NVM, Saraiva FDO, et al. Are desensitizing toothpastes equally biocompatible and effective against microorganisms? Braz Dent J. 2017;28:604–11.
pubmed: 29215686 doi: 10.1590/0103-6440201701413
Camargo S, et al. Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface. Am J Dent. 2014;27:307–11.
pubmed: 25707084
Groeger S, Schott S, Windhorst A, Meyle J. Effects of toothpaste on the gingival barrier function in vitro. Oral Health Dent Manag. 2016;15:3–4.
Waaler SM, Rölla G, Skjörland KK, Ögaard B. Effects of oral rinsing with triclosan and sodium lauryl sulfate on dental plaque formation: a pilot study. Eur J Oral Sci. 1993;101:192–5.
doi: 10.1111/j.1600-0722.1993.tb01103.x
Shanebrook AC. Formulation and use of surfactants in toothpastes. Citeseer: colloid and surface phenomenon; 2004.
Herlofson BB, Barkvoll P. Oral mucosal desquamation caused by two toothpaste detergents in an experimental model. Eur J Oral Sci. 1996;104(1):21–6.
pubmed: 8653493 doi: 10.1111/j.1600-0722.1996.tb00041.x
OECD. Test No. 431: Vitro skin corrosion: reconstructed human epidermis (rhe) test method. Paris, France: OECD; 2019.
doi: 10.1787/9789264264618-en
Petersen LJ, Lyngholm A, Arendt-Nielsen L. A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate. Inflamm Res. 2010;59:775–81.
pubmed: 20358390 doi: 10.1007/s00011-010-0189-1
Babich H, Babich J. Sodium lauryl sulfate and triclosan. in vitro cytotoxicity studies with gingival cells. Toxicol Lett. 1997;91:189–96.
pubmed: 9217239 doi: 10.1016/S0378-4274(97)00022-2
Herlofson B, Barkvoll P. Desquamative effect of sodium lauryl sulfate on oral mucosa. Prelim Study Acta Odontol Scand. 1993;51:39–43.
doi: 10.3109/00016359309041146
Veys R, Barkvoll P, De Boever J, Baert J. Possible side effects of sodium lauryl sulfate especially on oral tissues. J Head Neck Pathol. 1992;11:81–4.
Kim M, Lim KM. Melanocytotoxic chemicals and their toxic mechanisms. Toxicol Res. 2022;38:1–19.
doi: 10.1007/s43188-022-00144-2
Cheong KA, Noh M, Kim CH, Lee AY. S100b as a potential biomarker for the detection of cytotoxicity of melanocytes. Exp dermatol. 2014;23(3):165–71.
pubmed: 24451020 doi: 10.1111/exd.12332
Barkvoll P, Rölla G. Triclosan protects the skin against dermatitis caused by sodium lauryl sulphate exposure. J Clin Periodontol. 1994;21:717–9.
pubmed: 7852618 doi: 10.1111/j.1600-051X.1994.tb00792.x
Cvikl B, Lussi A, Moritz A, Gruber R. Dentifrices for children differentially affect cell viability in vitro. Clin Oral Invest. 2017;21:453–61.
doi: 10.1007/s00784-016-1813-4
Rantanen I, Nicander I, Jutila K, et al. Betaine reduces the irritating effect of sodium lauryl sulfate on human oral mucosa in vivo. Acta Odontol Scand. 2002;60:306–10.
pubmed: 12418722 doi: 10.1080/00016350260248292
Moore C, Addy M, Moran J. Toothpaste detergents: a potential source of oral soft tissue damage? Int J Dent Hyg. 2008;6:193–8.
pubmed: 18768023 doi: 10.1111/j.1601-5037.2008.00307.x
Benassi L, Bertazzoni G, Seidenari S. In vitro testing of tensides employing monolayer cultures: a comparison with results of patch tests on human volunteers. Contact Dermat. 1999;40:38–44.
doi: 10.1111/j.1600-0536.1999.tb05974.x
Souza-Rodriguez RD, Ferreira SDS, D’almeida-Couto RS, et al. Choice of toothpaste for the elderly: an in vitro study. Braz Oral Res. 2015;29:1–7.
doi: 10.1590/1807-3107BOR-2015.vol29.0094
Omidkhoda M, Rashid F, Pourgonabadi S, et al. Does adding fluorescein to toothpastes increase their cytotoxic effect on the oral cells? Asia Pac J Med Toxicol. 2022;11:13–8.
Sensodyne: Products. 2024. https://www.sensodyne.com/en-gb/products/ .
Zheng Y-B, Meng F-G, Chen B-Y, Wang X-C. Inactivation and conformational changes of lactate dehydrogenase from porcine heart in sodium dodecyl sulfate solutions. Int J Biol Macromol. 2002;31:97–102.
pubmed: 12559432 doi: 10.1016/S0141-8130(02)00063-6
Tabatabaei MH, Mahounak FS, Asgari N, Moradi Z. Cytotoxicity of the ingredients of commonly used toothpastes and mouthwashes on human gingival fibroblasts. Front Dent. 2019;16:450.
pubmed: 33089246 pmcid: 7569277
Ben Lagha A, Yang Y, Trivedi HM, Masters JG, Grenier D. A dual zinc plus arginine formulation attenuates the pathogenic properties of Porphyromonas gingivalis and protects gingival keratinocyte barrier function in an in vitro model. J Oral Microbiol. 2020;12:1798044.
pubmed: 32944154 pmcid: 7482904 doi: 10.1080/20002297.2020.1798044
Van Loveren C, Buijs J, Ten Cate J. The effect of triclosan toothpaste on enamel demineralization in a bacterial demineralization model. J Antimicrob Chemother. 2000;45:153–8.
pubmed: 10660496 doi: 10.1093/jac/45.2.153
Doyle AD, Masuda MY, Pyon GC, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78:192–201.
pubmed: 35899466 doi: 10.1111/all.15457
Ogulur I, Pat Y, Aydin T, et al. Gut epithelial barrier damage caused by dishwasher detergents and rinse aids. J Allergy Clin Immunol. 2023;151:469–84.
pubmed: 36464527 doi: 10.1016/j.jaci.2022.10.020
Fakhry-Smith S, Din C, Nathoo S, Gaffar A. clearance of sodium lauryl sulphate from the oral cavity. J Clin Periodontol. 1997;24:313–7.
pubmed: 9178110 doi: 10.1111/j.1600-051X.1997.tb00763.x
Sarembe S, Ufer C, Kiesow A, et al. Influence of the amount of toothpaste on cleaning efficacy: an in vitro study. Eur J Dent. 2022;17(2):497–503.
pubmed: 35785824 pmcid: 10329550
Patsakas A, Demetriou N, Angelopoulos A. Melanin pigmentation and inflammation in human gingiva. J Periodontol. 1981;52:701–4.
pubmed: 6946209 doi: 10.1902/jop.1981.52.11.701
Ponnaiyan D, Chillara P, Palani Y. Correlation of environmental tobacco smoke to gingival pigmentation and salivary alpha amylase in young adults. Eur J Dent. 2017;11:364–9.
pubmed: 28932148 pmcid: 5594967 doi: 10.4103/ejd.ejd_99_17
Koga H, Yamagishi A, Takayanagi A, Maeda K, Matsukubo T. Estimation of optimal amount of fluoride dentifrice for adults to prevent caries by comparison between fluoride uptake into enamel in vitro and fluoride concentration in oral fluid in vivo. Bull Tokyo Dent Coll. 2007;48:119–28.
pubmed: 18057858 doi: 10.2209/tdcpublication.48.119
Battino M, Ferreiro M, Gallardo I, Newman H, Bullon P. The antioxidant capacity of saliva. J Clin Periodontol: Rev Artic. 2002;29:189–94.
doi: 10.1034/j.1600-051X.2002.290301x.x
Otten MP, Busscher HJ, Van Der Mei HC, Van Hoogmoed CG, Abbas F. Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. Eur J Oral Sci. 2011;119:151–5.
pubmed: 21410555 doi: 10.1111/j.1600-0722.2011.00812.x
Ten Cate J, Mundorff-Shrestha S. Working group report 1: laboratory models for caries (in vitro and animal models). Adv Dent Res. 1995;9:332–4.
pubmed: 8615952 doi: 10.1177/08959374950090032001
Pecci-Lloret MP, López-García S, Rodríguez-Lozano FJ, Álvarez-Novoa P, García-Bernal D. In vitro biocompatibility of several children’s toothpastes on human gingival fibroblasts. Int J Environ Res Public Health. 2022;19:2954.
pubmed: 35270647 pmcid: 8910203 doi: 10.3390/ijerph19052954
Vannet BV, De Wever B, Adriaens E, Ramaeckers F, Bottenberg P. the evaluation of sodium lauryl sulphate in toothpaste on toxicity on human gingiva and mucosa: a 3d in vitro model. Dentistry. 2015. https://doi.org/10.4172/2161-1122.1000325 .
doi: 10.4172/2161-1122.1000325
Sun T, Jackson S, Haycock JW, Macneil S. Culture of skin cells in 3d rather than 2d improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122:372–81.
pubmed: 16446003 doi: 10.1016/j.jbiotec.2005.12.021
Moharamzadeh K, Brook IM, Scutt AM, Thornhill MH, Van Noort R. Mucotoxicity of dental composite resins on a tissue-engineered human oral mucosal model. J Dent. 2008;36:331–6.
pubmed: 18359139 doi: 10.1016/j.jdent.2008.01.019
Moghaddam B, Yang J, Roohpour N. Biologic evaluation of devices with chronic exposure using 3d human gingival model. Front Bioeng Biotech. 2016. https://doi.org/10.3389/conf.FBIOE.2016.01.01697 .
doi: 10.3389/conf.FBIOE.2016.01.01697
Scanavez C, Joekes I, Zahn H. Extractable substances from human hair: a discussion about the origin of the holes. Coll Surf B: Biointerfaces. 2004;39:39–43.
doi: 10.1016/j.colsurfb.2004.08.021
Scanavez C, Silveira M, Joekes I. Human hair: color changes caused by daily care damages on ultra-structure. Coll Surf B: Biointerfaces. 2003;28:39–52.
doi: 10.1016/S0927-7765(02)00129-7
Pires-Oliveira R, Joekes I. Uv–vis spectra as an alternative to the lowry method for quantify hair damage induced by surfactants. Coll Surf B: Biointerfaces. 2014;123:326–30.
doi: 10.1016/j.colsurfb.2014.09.035
Hicks SP, Swindells KJ, Middelkamp-Hup MA, et al. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white). J Am Acad Dermatol. 2003;48:727–34.
pubmed: 12734502 doi: 10.1067/mjd.2003.220
Cantudo-Sanagustín E, Gutiérrez-Corrales A, Vigo-Martínez M, et al. Pathogenesis and clinicohistopathological characteristics of melanoacanthoma: a systematic review. J Clin Exp Dent. 2016;8:E327.
pubmed: 27398186 pmcid: 4930645
Goenka S. In vitro evaluation of dental resin monomers, triethylene glycol dimethacrylate (Tegdma), and 2-Hydroxyethyl methacrylate (Hema) in primary human melanocytes: a pilot study. Oral. 2023;3:353–71.
doi: 10.3390/oral3030029
Goldfeder M, Egozy M, Shuster Ben-Yosef V, Adir N, Fishman A. Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol. 2013;97:1953–61.
pubmed: 22539021 doi: 10.1007/s00253-012-4050-z
Lessmann H, Schnuch A, Geier J, Uter W. Skin-sensitizing and irritant properties of propylene glycol: data analysis of a multicentre surveillance network (Ivdk*) and review of the literature. Contact Dermat. 2005;53:247–59.
doi: 10.1111/j.0105-1873.2005.00693.x
Wahlberg J, Nilsson G. Skin irritancy from propylene glycol. Acta Derm Venereol. 1984;64:286–90.
pubmed: 6209884 doi: 10.2340/0001555564286290
Skaare A, Kjærheim V, Barkvoll P, Rølla G. Skin reactions and irritation potential of four commercial toothpastes. Acta Odontol Scand. 1997;55:133–6.
pubmed: 9176662 doi: 10.3109/00016359709115405
Zhou S, Sakamoto K. Citric acid promoted melanin synthesis in b16f10 mouse melanoma cells, but inhibited it in human epidermal melanocytes and Hmv-Ii melanoma cells via the Gsk3β/Β-Catenin signaling pathway. PLoS ONE. 2020;15:E0243565.
pubmed: 33332393 pmcid: 7746170 doi: 10.1371/journal.pone.0243565
Chen Q-X, Huang H, Kubo I. Inactivation kinetics of mushroom tyrosinase by cetylpyridinium chloride. J Protein Chem. 2003;22:481–7.
pubmed: 14690251 doi: 10.1023/B:JOPC.0000005464.36961.9c
Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8–17.
pubmed: 29729478 doi: 10.1016/j.archoralbio.2018.04.018
Schieber M, Chandel NS. Ros function in redox signaling and oxidative stress. Curr Bio. 2014;24:R453–62.
doi: 10.1016/j.cub.2014.03.034
Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134:1512–8.
pubmed: 24573173 pmcid: 4418514 doi: 10.1038/jid.2014.65
Pires C, Botton G, Cadoná F, et al. Induction of cytotoxicity, oxidative stress and genotoxicity by root filling pastes used in primary teeth. Int Endod J. 2016;49:737–45.
pubmed: 26174479 doi: 10.1111/iej.12502
Kahvecioğlu F, Ülker HE, Tosun G, Özcan M. Effect of pediatric toothpastes based on 500 to 1450 ppm sodium fluoride and amine fluoride with different detergents on oxidative stress and cell viability. Meandros Med Dent J. 2022;23:53–9.
doi: 10.4274/meandros.galenos.2021.65982
Mizutani T, Mori R, Hirayama M, et al. Sodium lauryl sulfate stimulates the generation of reactive oxygen species through interactions with cell membranes. J Oleo Sci. 2016;65:993–1001.
pubmed: 27829611 doi: 10.5650/jos.ess16074
Bromberg Y, Pick E. Activation of nadph-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem. 1985;260:13539–45.
pubmed: 2997168 doi: 10.1016/S0021-9258(17)38756-2
Podobii O, Ladonko M. Optimization of the recipe of toothpaste by carrageenan addition. Ukr J Food Sci. 2017;5:63–71.
doi: 10.24263/2310-1008-2017-5-1-9
Sokolova E, Karetin Y, Davydova V, et al. Carrageenans effect on neutrophils alone and in combination with lps in vitro. J Biomed Mater Res, Part A. 2016;104:1603–9.
doi: 10.1002/jbm.a.35693
Ogata M, Matsui T, Kita T, Shigematsu A. Carrageenan primes leukocytes to enhance lipopolysaccharide-induced tumor necrosis factor alpha production. Infect Immun. 1999;67:3284–9.
pubmed: 10377102 pmcid: 116507 doi: 10.1128/IAI.67.7.3284-3289.1999
Wu W, Zhen Z, Niu T, et al. Κ-Carrageenan enhances lipopolysaccharide-induced interleukin-8 secretion by stimulating the Bcl10-Nf-Κb Pathway in Ht-29 Cells and aggravates C. freundii-induced inflammation in mice. Mediat Inflamm. 2017;2017:1–16.
doi: 10.1155/2017/6598540
Chen H-M, Yan X-J, Mai T-Y, Wang F, Xu W-F. Λ-Carrageenan oligosaccharides elicit reactive oxygen species production resulting in mitochondrial-dependent apoptosis in human umbilical vein endothelial cells. Int J Mol Med. 2009;24:801–6.
pubmed: 19885621
Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced nfκb activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochimica Et Biophysica Acta (Bba)-Gener Subj. 2008;1780:973–82.
doi: 10.1016/j.bbagen.2008.03.019
Bhattacharyya S, Gill R, Chen ML, et al. Toll-like receptor 4 mediates induction of the Bcl10-Nfκb-Interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Bio Chem. 2008;283:10550–8.
doi: 10.1074/jbc.M708833200
Bhattacharyya S, Katyal S, Unterman T, Tobacman J. Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in Hepg2 cells and C57bl/6j mice. Diabetologia. 2012;55:194–203.
pubmed: 22011715 doi: 10.1007/s00125-011-2333-z
Mckim JM Jr, Wilga PC, Pregenzer JF, Blakemore WR. The common food additive carrageenan is not a ligand for toll-like-receptor 4 (Tlr4) in an Hek293-Tlr4 reporter cell-line model. Food Chem Toxicol. 2015;78:153–8.
pubmed: 25640528 doi: 10.1016/j.fct.2015.01.003
Yohn JJ, Norris DA, Yrastorza DG, et al. Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J Investig Dermatol. 1991;97:405–9.
pubmed: 1875041 doi: 10.1111/1523-1747.ep12480983
Maresca V, Flori E, Briganti S, et al. Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress. Pigment Cell Melanoma Res. 2008;21:200–5.
pubmed: 18426413 doi: 10.1111/j.1755-148X.2007.00432.x
Bennadi D, Kshetrimayum N, Sibyl S, Reddy C. Toothpaste utilization profiles among preschool children. J Clin Diagn Res: Jcdr. 2014;8:212.
pubmed: 24783140 pmcid: 4003646
Tay H, Zainudin I, Jaafar N. Fluoride toothpaste utilization behaviour among preschool children in perlis. Malays Community Dent Health. 2009;26:211.
Barnhart WE, Hiller LK, Leonard GJ, Michaels SE. Dentifrice usage and ingestion among four age groups. J Dent Res. 1974;53:1317–22.
pubmed: 4529918 doi: 10.1177/00220345740530060301
Reddy BA, Ganapathy D, Kumar PK. Prevalence of toothpaste swallowing habit in children between the age group of 3 and 5 years. Drug Invent Today. 2019;12:1452–5.
Gilchrest BA, Vrabel MA, Flynn E, Szabo G. Selective cultivation of human melanocytes from newborn and adult epidermis. J Investig Dermatol. 1984;83:370–6.
pubmed: 6491362 doi: 10.1111/1523-1747.ep12264638
Mostefaoui Y, Claveau I, Ross G, Rouabhia M. Tissue structure, and Il-1β, Il-8, and Tnf-A secretions after contact by engineered human oral mucosa with dentifrices. J Clin Periodontol. 2002;29:1035–41.
pubmed: 12472997 doi: 10.1034/j.1600-051X.2002.291109.x
Hagi-Pavli E, Williams D, Rowland J, Thornhill M, Cruchley A. Characterizing the immunological effects of oral healthcare ingredients using an in vitro reconstructed human epithelial model. Food Chem Toxicol. 2014;74:139–48.
pubmed: 25290854 doi: 10.1016/j.fct.2014.09.007
Lv G, Zhu G, Xu M, Gao X, Xiao Q. Inhibition of carrageenan-induced dental inflammatory responses owing to decreased Trpv1 activity by dexmedetomidine. J Inflamm. 2020;17:1–10.
doi: 10.1186/s12950-020-00245-5
Toothpaste Products. 2024. https://www.colgate.com/en-my/products/toothpaste .
Ghapanchi J, Kamali F, Moattari A, et al. In vitro comparison of cytotoxic and antibacterial effects of 16 commercial toothpastes. J Int Oral Health: Jioh. 2015;7:39.
pubmed: 25878477 pmcid: 4385724
Siqueira W, Custodio W, Mcdonald E. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.
pubmed: 23018818 doi: 10.1177/0022034512462578

Auteurs

Shilpi Goenka (S)

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5281, USA. shilp.goenka@gmail.com.
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA. shilp.goenka@gmail.com.

Classifications MeSH