Lizards and the enzootic cycle of Borrelia burgdorferi sensu lato.

Borrelia Lyme disease lizards reptiles spirochetes

Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
03 Jun 2024
Historique:
revised: 06 04 2024
received: 17 10 2023
accepted: 16 04 2024
medline: 4 6 2024
pubmed: 4 6 2024
entrez: 3 6 2024
Statut: aheadofprint

Résumé

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.

Identifiants

pubmed: 38830767
doi: 10.1111/mmi.15271
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Science Foundation
ID : IOS1755286
Organisme : Wadsworth Center, New York State Department of Health

Informations de copyright

© 2024 John Wiley & Sons Ltd.

Références

Akins, D.R., Caimano, M.J., Yang, X., Cerna, F., Norgard, M.V. & Radolf, J.D. (1999) Molecular and evolutionary analysis of Borrelia burgdorferi 297 circular plasmid‐encoded lipoproteins with OspE‐ and OspF‐like leader peptides. Infection and Immunity, 67, 1526–1532.
Akira, S., Takeda, K. & Kaisho, T. (2001) Toll‐like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2, 675–680.
Amore, G., Tomassone, L., Grego, E., Ragagli, C., Bertolotti, L., Nebbia, P. et al. (2007) Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, central Italy. Journal of Medical Entomology, 44, 303–307.
Arsnoe, I., Tsao, J.I. & Hickling, G.J. (2019) Nymphal Ixodes scapularis questing behavior explains geographic variation in Lyme borreliosis risk in the eastern United States. Ticks and Tick‐borne Diseases, 10, 553–563.
Arsnoe, I.M., Hickling, G.J., Ginsberg, H.S., McElreath, R. & Tsao, J.I. (2015) Different populations of blacklegged tick nymphs exhibit differences in questing behavior that have implications for human lyme disease risk. PLoS ONE, 10, e0127450.
Barbour, A.G. & Gupta, R.S. (2021) The family Borreliaceae (Spirochaetales), a diverse group in two genera of tick‐borne spirochetes of mammals, birds, and reptiles. Journal of Medical Entomology, 58, 1513–1524.
Beckmann, S., Freund, R., Pehl, H., Rodgers, A. & Venegas, T. (2019) Rodent species as possible reservoirs of Borrelia burgdorferi in a prairie ecosystem. Ticks and Tick‐borne Diseases, 10, 1162–1167.
Burke, R.L. & Deichsel, G. (2008) Lacertid lizards introduced into North America: history and future. University Heights, OH: Society for the Study of Amphibians and Reptiles.
Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A. et al. (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proceedings of the National Academy of Sciences of the United States of America, 112, 8667–8671.
Clark, K., Hendricks, A. & Burge, D. (2005) Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern United States. Applied and Environmental Microbiology, 71, 2616–2625.
Collares‐Pereira, M., Couceiro, S., Franca, I., Kurtenbach, K., Schafer, S.M., Vitorino, L. et al. (2004) First isolation of Borrelia lusitaniae from a human patient. Journal of Clinical Microbiology, 42, 1316–1318.
Combs, M., Marcinkiewicz, A.L., Dupuis, A.P., 2nd, Davis, A.D., Lederman, P., Nowak, T.A. et al. (2022) Phylogenomic diversity elucidates mechanistic insights into Lyme Borreliae‐Host Association. mSystems, 7, e0048822.
Combs, M.A., Tufts, D.M., Adams, B., Lin, Y.P., Kolokotronis, S.O. & Diuk‐Wasser, M.A. (2023) Host adaptation drives genetic diversity in a vector‐borne disease system. PNAS Nexus, 2, pgad234.
Cutler, S.J. (2006) Possibilities for relapsing fever reemergence. Emerging Infectious Diseases, 12, 369–374.
Davis, H.R., Des Roches, S., Anderson, R.A. & Leache, A.D. (2022) Population expansion, divergence, and persistence in Western fence lizards (Sceloporus occidentalis) at the northern extreme of their distributional range. Scientific Reports, 12, 6310.
de Carvalho, I.L., Fonseca, J.E., Marques, J.G., Ullmann, A., Hojgaard, A., Zeidner, N. et al. (2008) Vasculitis‐like syndrome associated with Borrelia lusitaniae infection. Clinical Rheumatology, 27, 1587–1591.
Donahue, J.G., Piesman, J. & Spielman, A. (1987) Reservoir competence of white‐footed mice for Lyme disease spirochetes. The American Journal of Tropical Medicine and Hygiene, 36, 92–96.
Doneley, B. (2017) Taxonomy and introduction to common species. Hoboken, NJ: Wiley.
Dulipati, V., Meri, S. & Panelius, J. (2020) Complement evasion strategies of Borrelia burgdorferi sensu lato. FEBS Letters, 594, 2645–2656.
Durden, L.A., Oliver, J.H., Jr., Banks, C.W. & Vogel, G.N. (2002) Parasitism of lizards by immature stages of the blacklegged tick, Ixodes scapularis (Acari, Ixodidae). Experimental & Applied Acarology, 26, 257–266.
Eisen, R.J., Mun, J., Eisen, L. & Lane, R.S. (2004) Life stage‐related differences in density of questing ticks and infection with Borrelia burgdorferi sensu lato within a single cohort of Ixodes pacificus (Acari: Ixodidae). Journal of Medical Entomology, 41, 768–773.
Estes, R., de Queiroz, K. & Gauthier, J. (1988) Hylogenetic relationships within Squamata. Phylogenetic relationships of the lizard families. Redwood City, CA: Stanford University Press.
Ferreri, L., Perazzo, S., Venturino, E., Giacobini, M., Bertolotti, L. & Mannelli, A. (2017) Modeling the effects of variable feeding patterns of larval ticks on the transmission of Borrelia lusitaniae and Borrelia afzelii. Theoretical Population Biology, 116, 27–32.
Foldvari, G., Rigo, K., Majlathova, V., Majlath, I., Farkas, R. & Pet'ko, B. (2009) Detection of Borrelia burgdorferi sensu lato in lizards and their ticks from Hungary. Vector Borne and Zoonotic Diseases, 9, 331–336.
Giery, S.T. & Ostfeld, R.S. (2007) The role of lizards in the ecology of Lyme disease in two endemic zones of the northeastern United States. The Journal of Parasitology, 93, 511–517.
Ginsberg, H.S., Hickling, G.J., Burke, R.L., Ogden, N.H., Beati, L., LeBrun, R.A. et al. (2021) Why Lyme disease is common in the northern US, but rare in the south: the roles of host choice, host‐seeking behavior, and tick density. PLoS Biology, 19, e3001066.
Gomez‐Chamorro, A., Battilotti, F., Cayol, C., Mappes, T., Koskela, E., Boulanger, N. et al. (2019) Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Scientific Reports, 9, 6711.
Hart, T., Nguyen, N.T.T., Nowak, N.A., Zhang, F., Linhardt, R.J., Diuk‐Wasser, M. et al. (2018) Polymorphic factor H‐binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick‐to‐host transmission. PLoS Pathogens, 14, e1007106.
Hart, T.M., Dupuis, A.P., 2nd, Tufts, D.M., Blom, A.M., Starkey, S.R., Rego, R.O.M. et al. (2021) Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathogens, 17, e1009801.
Hellwage, J., Meri, T., Heikkila, T., Alitalo, A., Panelius, J., Lahdenne, P. et al. (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. The Journal of Biological Chemistry, 276, 8427–8435.
Hrazdilova, K., Danek, O., Hrbatova, A., Cervena, B., Noskova, E., Adamik, P. et al. (2023) Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus. Parasites & Vectors, 16, 354.
James, A.M. & Oliver, J.H., Jr. (1990) Feeding and host preference of immature Ixodes dammini, I. scapularis, and I. pacificus (Acari: Ixodidae). Journal of Medical Entomology, 27, 324–330.
Janes, D.E., Organ, C.L., Fujita, M.K., Shedlock, A.M. & Edwards, S.V. (2010) Genome evolution in Reptilia, the sister group of mammals. Annual Review of Genomics and Human Genetics, 11, 239–264.
Johnson, P.T. & Thieltges, D.W. (2010) Diversity, decoys and the dilution effect: how ecological communities affect disease risk. The Journal of Experimental Biology, 213, 961–970.
Jozsi, M. (2017) Factor H family proteins in complement evasion of microorganisms. Frontiers in Immunology, 8, 571.
Keesing, F., Belden, L.K., Daszak, P., Dobson, A., Harvell, C.D., Holt, R.D. et al. (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647–652.
Kitsou, C., Fikrig, E. & Pal, U. (2021) Tick host immunity: vector immunomodulation and acquired tick resistance. Trends in Immunology, 42, 554–574.
Kraiczy, P., Hellwage, J., Skerka, C., Kirschfink, M., Brade, V., Zipfel, P.F. et al. (2003) Immune evasion of Borrelia burgdorferi: mapping of a complement‐inhibitor factor H‐binding site of BbCRASP‐3, a novel member of the Erp protein family. European Journal of Immunology, 33, 697–707.
Kuo, M.M., Lane, R.S. & Giclas, P.C. (2000) A comparative study of mammalian and reptilian alternative pathway of complement‐mediated killing of the Lyme disease spirochete (Borrelia burgdorferi). The Journal of Parasitology, 86, 1223–1228.
Kurokawa, C., Lynn, G.E., Pedra, J.H.F., Pal, U., Narasimhan, S. & Fikrig, E. (2020) Interactions between Borrelia burgdorferi and ticks. Nature Reviews. Microbiology, 18, 587–600.
Kurtenbach, K., De Michelis, S., Etti, S., Schafer, S.M., Sewell, H.S., Brade, V. et al. (2002) Host association of Borrelia burgdorferi sensu lato—the key role of host complement. Trends in Microbiology, 10, 74–79.
Kurtenbach, K., Hanincova, K., Tsao, J.I., Margos, G., Fish, D. & Ogden, N.H. (2006) Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology, 4, 660–669.
Kurtenbach, K., Sewell, H.S., Ogden, N.H., Randolph, S.E. & Nuttall, P.A. (1998) Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and Immunity, 66, 1248–1251.
Lane, R.S. (1990) Susceptibility of the western fence lizard (Sceloporus occidentalis) to the Lyme borreliosis spirochete (Borrelia burgdorferi). The American Journal of Tropical Medicine and Hygiene, 42, 75–82.
Lane, R.S. & Loye, J.E. (1989) Lyme disease in California: interrelationship of Ixodes pacificus (Acari: Ixodidae), the western fence lizard (Sceloporus occidentalis), and Borrelia burgdorferi. Journal of Medical Entomology, 26, 272–278.
Lane, R.S., Mun, J., Eisen, L. & Eisen, R.J. (2006) Refractoriness of the western fence lizard (Sceloporus occidentalis) to the Lyme disease group spirochete Borrelia bissettii. The Journal of Parasitology, 92, 691–696.
Lane, R.S. & Quistad, G.B. (1998) Borreliacidal factor in the blood of the western fence lizard (Sceloporus occidentalis). The Journal of Parasitology, 84, 29–34.
Lee, Y.H., Lee, H.S., Choi, S.J., Ji, J.D. & Song, G.G. (2012) Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta‐analysis. Clinical and Experimental Rheumatology, 30, 262–265.
Levin, M., Levine, J.F., Yang, S., Howard, P. & Apperson, C.S. (1996) Reservoir competence of the southeastern five‐lined skink (Eumeces inexpectatus) and the green anole (Anolis carolinensis) for Borrelia burgdorferi. The American Journal of Tropical Medicine and Hygiene, 54, 92–97.
Levine, J.F., Apperson, C.S., Howard, P., Washburn, M. & Braswell, A.L. (1997) Lizards as hosts for immature Ixodes scapularis (Acari: Ixodidae) in North Carolina. Journal of Medical Entomology, 34, 594–598.
Levine, J.F., Wilson, M.L. & Spielman, A. (1985) Mice as reservoirs of the Lyme disease spirochete. The American Journal of Tropical Medicine and Hygiene, 34, 355–360.
Lin, Y.P., Diuk‐Wasser, M.A., Stevenson, B. & Kraiczy, P. (2020) Complement evasion contributes to Lyme Borreliae‐Host Associations. Trends in Parasitology, 36, 634–645.
Lin, Y.P., Frye, A.M., Nowak, T.A. & Kraiczy, P. (2020) New insights into CRASP‐mediated complement evasion in the Lyme disease enzootic cycle. Frontiers in Cellular and Infection Microbiology, 10, 1.
Lin, Y.P., Tufts, D.M., Combs, M., Dupuis, A.P., II, Marcinkiewicz, A.L., Hirsbrunner, A.D. et al. (2022) Cellular and immunological mechanisms influence host‐adapted phenotypes in a vector‐borne microparasite. Proceedings of the Biological Sciences, 289, 20212087.
LoGiudice, K., Duerr, S.T., Newhouse, M.J., Schmidt, K.A., Killilea, M.E. & Ostfeld, R.S. (2008) Impact of host community composition on Lyme disease risk. Ecology, 89, 2841–2849.
LoGiudice, K., Ostfeld, R.S., Schmidt, K.A. & Keesing, F. (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences of the United States of America, 100, 567–571.
Lorenz, E., Hallman, M., Marttila, R., Haataja, R. & Schwartz, D.A. (2002) Association between the Asp299Gly polymorphisms in the toll‐like receptor 4 and premature births in the Finnish population. Pediatric Research, 52, 373–376.
Majlathova, V., Majlath, I., Derdakova, M., Vichova, B. & Pet'ko, B. (2006) Borrelia lusitaniae and green lizards (Lacerta viridis), karst region, Slovakia. Emerging Infectious Diseases, 12, 1895–1901.
Mans, B.J., de Klerk, D., Pienaar, R. & Latif, A.A. (2011) Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood‐feeding in ticks. PLoS ONE, 6, e23675.
Manweiler, S.A., Lane, R.S., Block, W.M. & Morrison, M.L. (1990) Survey of birds and lizards for ixodid ticks (Acari) and spirochetal infection in northern California. Journal of Medical Entomology, 27, 1011–1015.
Manweiler, S.A., Lane, R.S. & Tempelis, C.H. (1992) The western fence lizard Sceloporus occidentalis: evidence of field exposure to Borrelia burgdorferi in relation to infestation by Ixodes pacificus (Acari: Ixodidae). The American Journal of Tropical Medicine and Hygiene, 47, 328–336.
Marcinkiewicz, A.L., Brangulis, K., Dupuis, A.P., 2nd, Hart, T.M., Zamba‐Campero, M., Nowak, T.A. et al. (2023) Structural evolution of an immune evasion determinant shapes pathogen host tropism. Proceedings of the National Academy of Sciences of the United States of America, 120, e2301549120.
Margos, G., Henningsson, A.J., Markowicz, M. & Fingerle, V. (2022) Borrelia ecology and evolution: ticks and hosts and the environment. Microorganisms, 10, 1513.
McArthur, D.B. (2019) Emerging infectious diseases. The Nursing Clinics of North America, 54, 297–311.
Mendoza‐Roldan, J.A., Colella, V., Lia, R.P., Nguyen, V.L., Barros‐Battesti, D.M., Iatta, R. et al. (2019) Borrelia burgdorferi (sensu lato) in ectoparasites and reptiles in southern Italy. Parasites & Vectors, 12, 35.
Merchant, M., Williams, S., Trosclair, P.L., 3rd, Elsey, R.M. & Mills, K. (2007) Febrile response to infection in the American alligator (Alligator mississippiensis). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 148, 921–925.
Michaelides, S.N., While, G.M., Zajac, N. & Uller, T. (2015) Widespread primary, but geographically restricted secondary, human introductions of wall lizards, Podarcis muralis. Molecular Ecology, 24, 2702–2714.
Morgan, B.P. (2000) Measurement of complement hemolytic activity, generation of complement‐depleted sera, and production of hemolytic intermediates. Methods in Molecular Biology, 150, 61–71.
Musilova, L., Kybicova, K., Fialova, A., Richtrova, E. & Kulma, M. (2022) First isolation of Borrelia lusitaniae DNA from green lizards (Lacerta viridis) and Ixodes ricinus ticks in The Czech Republic. Ticks and Tick‐borne Diseases, 13, 101887.
Narasimhan, S. & Fikrig, E. (2015) Tick microbiome: the force within. Trends in Parasitology, 31, 315–323.
Narasimhan, S., Rajeevan, N., Liu, L., Zhao, Y.O., Heisig, J., Pan, J. et al. (2014) Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host & Microbe, 15, 58–71.
Nava, S., Guglielmone, A.A. & Mangold, A.J. (2009) An overview of systematics and evolution of ticks. Frontiers in Bioscience, 14, 2857–2877.
Netea, M.G., Wijmenga, C. & O'Neill, L.A. (2012) Genetic variation in toll‐like receptors and disease susceptibility. Nature Immunology, 13, 535–542.
Norte, A.C., Alves da Silva, A., Alves, J., da Silva, L.P., Nuncio, M.S., Escudero, R. et al. (2015) The importance of lizards and small mammals as reservoirs for Borrelia lusitaniae in Portugal. Environmental Microbiology Reports, 7, 188–193.
Norte, A.C., Boyer, P.H., Castillo‐Ramirez, S., Chvostac, M., Brahami, M.O., Rollins, R.E. et al. (2021) The population structure of Borrelia lusitaniae is reflected by a population division of its Ixodes vector. Microorganisms, 9, 933.
Nowak, T.A., Lown, L.A., Marcinkiewicz, A.L., Surth, V., Kraiczy, P., Burke, R. et al. (2023) Outer surface protein E (OspE) mediates Borrelia burgdorferi sensu stricto strain‐specific complement evasion in the eastern fence lizard, Sceloporus undulatus. Ticks and Tick‐borne Diseases, 14, 102081.
Oliver, J.H., Jr., Cummins, G.A. & Joiner, M.S. (1993) Immature Ixodes scapularis (Acari: Ixodidae) parasitizing lizards from the southeastern U.S.A. The Journal of Parasitology, 79, 684–689.
Oosting, M., Ter Hofstede, H., Sturm, P., Adema, G.J., Kullberg, B.J., van der Meer, J.W. et al. (2011) TLR1/TLR2 heterodimers play an important role in the recognition of borrelia spirochetes. PLoS ONE, 6, e25998.
Ospelt, C. & Gay, S. (2010) TLRs and chronic inflammation. The International Journal of Biochemistry & Cell Biology, 42, 495–505.
Parise, C.M., Breuner, N.E., Hojgaard, A., Osikowicz, L.M., Replogle, A.J., Eisen, R.J. et al. (2020) Experimental demonstration of reservoir competence of the white‐footed mouse, Peromyscus leucopus (Rodentia: Cricetidae), for the Lyme disease spirochete, Borrelia mayonii (Spirochaetales: Spirochaetaceae). Journal of Medical Entomology, 57, 927–932.
Pearson, P., Rich, C., Feehan, M.J.R., Ditchkoff, S.S. & Rich, S.M. (2023) White‐tailed deer serum kills the Lyme disease spirochete, Borrelia burgdorferi. Vector Borne and Zoonotic Diseases, 23, 303–305.
Radolf, J.D., Caimano, M.J., Stevenson, B. & Hu, L.T. (2012) Of ticks, mice and men: understanding the dual‐host lifestyle of Lyme disease spirochaetes. Nature Reviews Microbiology, 10, 87–99.
Radstake, T.R., Franke, B., Hanssen, S., Netea, M.G., Welsing, P., Barrera, P. et al. (2004) The toll‐like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis and Rheumatism, 50, 999–1001.
Ragagli, C., Bertolotti, L., Giacobini, M., Mannelli, A., Bisanzio, D., Amore, G. et al. (2011) Transmission dynamics of Borrelia lusitaniae and Borrelia afzelii among Ixodes ricinus, lizards, and mice in Tuscany, central Italy. Vector Borne and Zoonotic Diseases, 11, 21–28.
Ragnarsdottir, B., Jonsson, K., Urbano, A., Gronberg‐Hernandez, J., Lutay, N., Tammi, M. et al. (2010) Toll‐like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS ONE, 5, e10734.
Rahman, S., Shering, M., Ogden, N.H., Lindsay, R. & Badawi, A. (2016) Toll‐like receptor cascade and gene polymorphism in host‐pathogen interaction in Lyme disease. Journal of Inflammation Research, 9, 91–102.
Reis, E.S., Mastellos, D.C., Hajishengallis, G. & Lambris, J.D. (2019) New insights into the immune functions of complement. Nature Reviews Immunology, 19, 503–516.
Richter, D. & Matuschka, F.R. (2006) Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards. Applied and Environmental Microbiology, 72, 4627–4632.
Richter, D., Schroder, B., Hartmann, N.K. & Matuschka, F.R. (2013) Spatial stratification of various Lyme disease spirochetes in a central European site. FEMS Microbiology Ecology, 83, 738–744.
Rulison, E.L., Kerr, K.T., Dyer, M.C., Han, S., Burke, R.L., Tsao, J.I. et al. (2014) Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands. The Journal of Parasitology, 100, 578–582.
Ruta, M., Coates, M.I. & Quicke, D.L. (2003) Early tetrapod relationships revisited. Biological Reviews of the Cambridge Philosophical Society, 78, 251–345.
Salkeld, D.J. & Lane, R.S. (2010) Community ecology and disease risk: lizards, squirrels, and the Lyme disease spirochete in California, USA. Ecology, 91, 293–298.
Schroder, N.W., Diterich, I., Zinke, A., Eckert, J., Draing, C., von Baehr, V. et al. (2005) Heterozygous Arg753Gln polymorphism of human TLR‐2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. Journal of Immunology, 175, 2534–2540.
Skare, J.T. & Garcia, B.L. (2020) Complement evasion by Lyme disease spirochetes. Trends in Microbiology, 28, 889–899.
Steere, A.C., Strle, F., Wormser, G.P., Hu, L.T., Branda, J.A., Hovius, J.W. et al. (2016) Lyme borreliosis. Nature Reviews Disease Primers, 2, 16090.
Stevenson, B. & Brissette, C.A. (2023) Erp and Rev adhesins of the Lyme disease spirochete's ubiquitous cp32 prophages assist the bacterium during vertebrate infection. Infection and Immunity, 91, e0025022.
Strle, K., Shin, J.J., Glickstein, L.J. & Steere, A.C. (2012) Association of a toll‐like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic‐refractory Lyme arthritis. Arthritis and Rheumatism, 64, 1497–1507.
Swanson, K.I. & Norris, D.E. (2007) Detection of Borrelia burgdorferi DNA in lizards from southern Maryland. Vector Borne and Zoonotic Diseases, 7, 42–49.
Swei, A. & Kwan, J.Y. (2017) Tick microbiome and pathogen acquisition altered by host blood meal. The ISME Journal, 11, 813–816.
Takeuchi, O. & Akira, S. (2010) Pattern recognition receptors and inflammation. Cell, 140, 805–820.
Taragelova, V.R., Mahrikova, L., Selyemova, D., Vaclav, R. & Derdakova, M. (2016) Natural foci of Borrelia lusitaniae in a mountain region of Central Europe. Ticks and Tick‐borne Diseases, 7, 350–356.
Tijsse‐Klasen, E., Fonville, M., Reimerink, J.H., Spitzen‐van der Sluijs, A. & Sprong, H. (2010) Role of sand lizards in the ecology of Lyme and other tick‐borne diseases in The Netherlands. Parasites & Vectors, 3, 42.
Trevisan, G., Cinco, M., Trevisini, S., di Meo, N., Chersi, K., Ruscio, M. et al. (2021) Borreliae part 1: Borrelia Lyme group and Echidna‐reptile group. Biology (Basel), 10, 1036.
Tschirren, B., Andersson, M., Scherman, K., Westerdahl, H., Mittl, P.R. & Raberg, L. (2013) Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proceedings of the Biological Sciences, 280, 20130364.
Tufts, D.M., Hart, T.M., Chen, G.F., Kolokotronis, S.O., Diuk‐Wasser, M.A. & Lin, Y.P. (2019) Outer surface protein polymorphisms linked to host‐spirochete association in Lyme borreliae. Molecular Microbiology, 111, 868–882.
Ullmann, A.J., Lane, R.S., Kurtenbach, K., Miller, M., Schriefer, M.E., Zeldner, N. et al. (2003) Bacteriolytic activity of selected vertebrate sera for Borrelia burgdorferi sensu stricto and Borrelia bissettii. The Journal of Parasitology, 89, 1256–1257.
Vieira, J.P., Brito, M.J. & de Carvalho, I.L. (2019) Borrelia lusitaniae infection mimicking headache, neurologic deficits, and cerebrospinal fluid lymphocytosis. Journal of Child Neurology, 34, 748–750.
Voogdt, C.G., Bouwman, L.I., Kik, M.J., Wagenaar, J.A. & van Putten, J.P. (2016) Reptile toll‐like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Scientific Reports, 6, 19046.
Wang, G., Ojaimi, C., Iyer, R., Saksenberg, V., McClain, S.A., Wormser, G.P. et al. (2001) Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infection and Immunity, 69, 4303–4312.
Wang, J., Gao, L. & Aksoy, S. (2023) Microbiota in disease‐transmitting vectors. Nature Reviews Microbiology, 21, 604–618.
Wolcott, K.A., Margos, G., Fingerle, V. & Becker, N.S. (2021) Host association of Borrelia burgdorferi sensu lato: a review. Ticks and Tick‐borne Diseases, 12, 101766.
Wormser, G.P., Liveris, D., Nowakowski, J., Nadelman, R.B., Cavaliere, L.F., McKenna, D. et al. (1999) Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. The Journal of Infectious Diseases, 180, 720–725.
Zimmerman, L.M. (2020) The reptilian perspective on vertebrate immunity: 10 years of progress. The Journal of Experimental Biology, 223, jeb214171.
Zimmerman, L.M. (2022) Adaptive immunity in reptiles: conventional components but unconventional strategies. Integrative and Comparative Biology, 62, 1572–1583.
Zimmerman, L.M., Vogel, L.A. & Bowden, R.M. (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. The Journal of Experimental Biology, 213, 661–671.

Auteurs

Tristan A Nowak (TA)

Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA.
Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA.

Russell L Burke (RL)

Department of Biology, Hofstra University, Hempstead, New York, USA.

Maria A Diuk-Wasser (MA)

Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA.

Yi-Pin Lin (YP)

Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA.
Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA.
Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA.

Classifications MeSH