Identification and validation of a blood- based diagnostic lipidomic signature of pediatric inflammatory bowel disease.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 Jun 2024
03 Jun 2024
Historique:
received:
19
05
2023
accepted:
30
04
2024
medline:
4
6
2024
pubmed:
4
6
2024
entrez:
3
6
2024
Statut:
epublish
Résumé
Improved biomarkers are needed for pediatric inflammatory bowel disease. Here we identify a diagnostic lipidomic signature for pediatric inflammatory bowel disease by analyzing blood samples from a discovery cohort of incident treatment-naïve pediatric patients and validating findings in an independent inception cohort. The lipidomic signature comprising of only lactosyl ceramide (d18:1/16:0) and phosphatidylcholine (18:0p/22:6) improves the diagnostic prediction compared with high-sensitivity C-reactive protein. Adding high-sensitivity C-reactive protein to the signature does not improve its performance. In patients providing a stool sample, the diagnostic performance of the lipidomic signature and fecal calprotectin, a marker of gastrointestinal inflammation, does not substantially differ. Upon investigation in a third pediatric cohort, the findings of increased lactosyl ceramide (d18:1/16:0) and decreased phosphatidylcholine (18:0p/22:6) absolute concentrations are confirmed. Translation of the lipidomic signature into a scalable diagnostic blood test for pediatric inflammatory bowel disease has the potential to support clinical decision making.
Identifiants
pubmed: 38830848
doi: 10.1038/s41467-024-48763-7
pii: 10.1038/s41467-024-48763-7
doi:
Substances chimiques
Biomarkers
0
Phosphatidylcholines
0
C-Reactive Protein
9007-41-4
Leukocyte L1 Antigen Complex
0
Types de publication
Journal Article
Validation Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
4567Subventions
Organisme : Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
ID : RB13-0160
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2020-02021
Organisme : NordForsk
ID : 90569
Informations de copyright
© 2024. The Author(s).
Références
Ashton, J. J. et al. Incidence and prevalence of paediatric inflammatory bowel disease continues to increase in the South of England. J. Pediatr. Gastroenterol. Nutr. 75, e20–e24 (2022).
pubmed: 35666860
doi: 10.1097/MPG.0000000000003511
Agrawal, M. et al. The rising burden of inflammatory bowel disease in Denmark Over Two Decades: A nationwide cohort study. Gastroenterology 163, 1547–1554.e1545 (2022).
pubmed: 35952799
doi: 10.1053/j.gastro.2022.07.062
Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: Systematic review. Gastroenterology 162, 1147–1159.e1144 (2022).
pubmed: 34995526
doi: 10.1053/j.gastro.2021.12.282
Malham, M. et al. Paediatric onset inflammatory bowel disease is a distinct and aggressive phenotype—a comparative population-based study. GastroHep 1, 266–273 (2019).
doi: 10.1002/ygh2.368
Fuller, M. K. Pediatric inflammatory bowel Disease: Special considerations. Surg. Clin. North Am. 99, 1177–1183 (2019).
pubmed: 31676056
doi: 10.1016/j.suc.2019.08.008
Schoepfer, A. M. et al. Diagnostic delay in Crohn’s disease is associated with a complicated disease course and increased operation rate. Am. J. Gastroenterol. 108, 1744–1753 (2013). quiz 1754.
pubmed: 23978953
doi: 10.1038/ajg.2013.248
Burisch, J. et al. Proximal disease extension in patients with limited ulcerative colitis: A Danish population-based inception cohort. J. Crohns Colitis 11, 1200–1204 (2017).
pubmed: 28486626
pmcid: 6279091
doi: 10.1093/ecco-jcc/jjx066
Colombel, J. F. et al. Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet 390, 2779–2789 (2017).
pubmed: 29096949
doi: 10.1016/S0140-6736(17)32641-7
Ungaro, R. C. et al. Deep remission at 1 year prevents progression of early Crohn’s disease. Gastroenterology 159, 139–147 (2020).
pubmed: 32224129
doi: 10.1053/j.gastro.2020.03.039
Oliveira, S. B. & Monteiro, I. M. Diagnosis and management of inflammatory bowel disease in children. BMJ 357, j2083 (2017).
pubmed: 28566467
pmcid: 6888256
doi: 10.1136/bmj.j2083
Levine, A. et al. ESPGHAN Revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 58, 795–806 (2014).
pubmed: 24231644
doi: 10.1097/MPG.0000000000000239
van Rheenen, P. F., Van de Vijver, E. & Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ 341, c3369 (2010).
pubmed: 20634346
pmcid: 2904879
doi: 10.1136/bmj.c3369
Fan, F. et al. Lipidomic profiling in inflammatory bowel disease: Comparison between ulcerative Colitis and Crohn’s Disease. Inflamm. Bowel Dis. 21, 1511–1518 (2015).
pubmed: 25895111
doi: 10.1097/MIB.0000000000000394
Iwatani, S. et al. Novel mass spectrometry‐based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 35, 1355–1364 (2020).
pubmed: 32285970
doi: 10.1111/jgh.15067
Guan, S. et al. UPLC–QTOF-MS-based plasma lipidomic profiling reveals biomarkers for inflammatory bowel disease diagnosis. J. proteome Res. 19, 600–609 (2019).
pubmed: 31821004
doi: 10.1021/acs.jproteome.9b00440
Scoville, E. A. et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 14, 1–12 (2018).
doi: 10.1007/s11306-017-1311-y
Hua, X. et al. Inflammatory bowel disease is associated with prediagnostic perturbances in metabolic pathways. Gastroenterology 164, 147–150.e142 (2023).
pubmed: 36122699
doi: 10.1053/j.gastro.2022.09.007
Vila A. V. et al. Faecal metabolome and its determinants in inflammatory bowel disease. Gut, gutjnl-2022-328048 (2023).
Ferru-Clément, R. et al. Serum lipidomic screen identifies key metabolites, pathways, and disease classifiers in Crohn’s disease. Inflamm. Bowel Dis. 29, 1024–1037 (2023).
pubmed: 36662167
pmcid: 10320374
doi: 10.1093/ibd/izac281
Carroll, M. W. et al. The impact of inflammatory bowel disease in Canada 2018: children and adolescents with IBD. J. Can. Assoc. Gastroenterol. 2, S49–S67 (2019).
pubmed: 31294385
doi: 10.1093/jcag/gwy056
Lijmer, J. G. et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282, 1061–1066 (1999).
pubmed: 10493205
doi: 10.1001/jama.282.11.1061
Daniluk, U. et al. Untargeted metabolomics and inflammatory markers profiling in children with Crohn’s disease and ulcerative colitis—A preliminary study. Inflamm. Bowel Dis. 25, 1120–1128 (2019).
pubmed: 30772902
doi: 10.1093/ibd/izy402
An, D., Na, C., Bielawski, J., Hannun, Y. A. & Kasper, D. L. Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc. Natl Acad. Sci. USA 108, 4666–4671 (2011).
pubmed: 20855611
doi: 10.1073/pnas.1001501107
Duan, R. D. & Nilsson, A. Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62–72 (2009).
pubmed: 19027789
doi: 10.1016/j.plipres.2008.04.003
Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).
pubmed: 34587385
doi: 10.1056/NEJMoa2033617
Ehehalt, R., Braun, A., Karner, M., Füllekrug, J. & Stremmel, W. Phosphatidylcholine as a constituent in the colonic mucosal barrier-physiological and clinical relevance. Biochim Biophys. Acta 1801, 983–993 (2010).
pubmed: 20595010
doi: 10.1016/j.bbalip.2010.05.014
Ehehalt, R. et al. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray‐tandem mass spectrometry. Scand. J. Gastroenterol. 39, 737–742 (2004).
pubmed: 15513358
doi: 10.1080/00365520410006233
Braun, A. et al. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. bowel Dis. 15, 1705–1720 (2009).
pubmed: 19504612
doi: 10.1002/ibd.20993
Bazarganipour, S. et al. The lipid status in patients with ulcerative colitis: Sphingolipids are disease-dependent regulated. J. Clin. Med. 8, 971 (2019).
pubmed: 31277430
pmcid: 6678307
doi: 10.3390/jcm8070971
Diab, J. et al. Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm. Bowel Dis. 25, 1780–1787 (2019).
pubmed: 31077307
doi: 10.1093/ibd/izz098
Horta, D. et al. Analysis of the association between fatigue and the plasma lipidomic profile of inflammatory bowel disease patients. J. Proteome Res. 20, 381–392 (2020).
pubmed: 32969224
doi: 10.1021/acs.jproteome.0c00462
Murgia, A. et al. Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics 14, 1–14 (2018).
doi: 10.1007/s11306-018-1439-4
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433
doi: 10.1007/s13238-017-0423-5
Facciotti, F. et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13, 474–480 (2012).
pubmed: 22426352
doi: 10.1038/ni.2245
Van Kaer, L. & Wu, L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol. 9, 519 (2018).
pubmed: 29593743
pmcid: 5859017
doi: 10.3389/fimmu.2018.00519
Stremmel, W. et al. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut 54, 966–971 (2005).
pubmed: 15951544
pmcid: 1774598
doi: 10.1136/gut.2004.052316
Nyström N. et al. Mucosal and plasma metabolomes in new-onset paediatric inflammatory bowel disease: correlations with disease characteristics and plasma inflammation protein markers. J Crohns Colitis. 17, 418–432 (2022).
Hyams, J. S. et al. Development and validation of a pediatric Crohn’s disease activity index. J. Pediatr. Gastroenterol. Nutr. 12, 439–447 (1991).
pubmed: 1678008
Kappelman, M. D. et al. Short pediatric Crohn’s disease activity index for quality improvement and observational research. Inflamm. Bowel Dis. 17, 112–117 (2010).
pubmed: 20812330
doi: 10.1002/ibd.21452
Turner, D. et al. Appraisal of the pediatric ulcerative colitis activity index (PUCAI). Inflamm. Bowel Dis. 15, 1218–1223 (2009).
pubmed: 19161178
doi: 10.1002/ibd.20867
Turner, D. et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: A prospective multicenter study. Gastroenterology 133, 423–432 (2007).
pubmed: 17681163
doi: 10.1053/j.gastro.2007.05.029
Attauabi, M. et al. Influence of genetics, immunity and the microbiome on the prognosis of inflammatory bowel disease (IBD Prognosis Study): The protocol for a Copenhagen IBD Inception Cohort Study. BMJ Open 12, e055779 (2022).
pubmed: 35760545
pmcid: 9237907
doi: 10.1136/bmjopen-2021-055779
Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 1–11 (2010).
doi: 10.1186/1471-2105-11-395
Lehmann, R. From bedside to bench—practical considerations to avoid pre-analytical pitfalls and assess sample quality for high-resolution metabolomics and lipidomics analyses of body fluids. Anal. Bioanal. Chem. 413, 5567–5585 (2021).
pubmed: 34159398
pmcid: 8410705
doi: 10.1007/s00216-021-03450-0
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
pubmed: 16632515
doi: 10.1093/biostatistics/kxj037
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Series B (Methodological) 57, 289–300 (1995).
Breheny, P. & Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl Stat. 5, 232–253 (2011).
pubmed: 22081779
pmcid: 3212875
doi: 10.1214/10-AOAS388
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).
pubmed: 7063747
doi: 10.1148/radiology.143.1.7063747
Sundström, J., Byberg, L., Gedeborg, R., Michaëlsson, K. & Berglund, L. Useful tests of usefulness of new risk factors: Tools for assessing reclassification and discrimination. Scand. J. Public Health 39, 439–441 (2011).
pubmed: 21270137
doi: 10.1177/1403494810396556