Identification and validation of a blood- based diagnostic lipidomic signature of pediatric inflammatory bowel disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 Jun 2024
Historique:
received: 19 05 2023
accepted: 30 04 2024
medline: 4 6 2024
pubmed: 4 6 2024
entrez: 3 6 2024
Statut: epublish

Résumé

Improved biomarkers are needed for pediatric inflammatory bowel disease. Here we identify a diagnostic lipidomic signature for pediatric inflammatory bowel disease by analyzing blood samples from a discovery cohort of incident treatment-naïve pediatric patients and validating findings in an independent inception cohort. The lipidomic signature comprising of only lactosyl ceramide (d18:1/16:0) and phosphatidylcholine (18:0p/22:6) improves the diagnostic prediction compared with high-sensitivity C-reactive protein. Adding high-sensitivity C-reactive protein to the signature does not improve its performance. In patients providing a stool sample, the diagnostic performance of the lipidomic signature and fecal calprotectin, a marker of gastrointestinal inflammation, does not substantially differ. Upon investigation in a third pediatric cohort, the findings of increased lactosyl ceramide (d18:1/16:0) and decreased phosphatidylcholine (18:0p/22:6) absolute concentrations are confirmed. Translation of the lipidomic signature into a scalable diagnostic blood test for pediatric inflammatory bowel disease has the potential to support clinical decision making.

Identifiants

pubmed: 38830848
doi: 10.1038/s41467-024-48763-7
pii: 10.1038/s41467-024-48763-7
doi:

Substances chimiques

Biomarkers 0
Phosphatidylcholines 0
C-Reactive Protein 9007-41-4
Leukocyte L1 Antigen Complex 0

Types de publication

Journal Article Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

4567

Subventions

Organisme : Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
ID : RB13-0160
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2020-02021
Organisme : NordForsk
ID : 90569

Informations de copyright

© 2024. The Author(s).

Références

Ashton, J. J. et al. Incidence and prevalence of paediatric inflammatory bowel disease continues to increase in the South of England. J. Pediatr. Gastroenterol. Nutr. 75, e20–e24 (2022).
pubmed: 35666860 doi: 10.1097/MPG.0000000000003511
Agrawal, M. et al. The rising burden of inflammatory bowel disease in Denmark Over Two Decades: A nationwide cohort study. Gastroenterology 163, 1547–1554.e1545 (2022).
pubmed: 35952799 doi: 10.1053/j.gastro.2022.07.062
Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: Systematic review. Gastroenterology 162, 1147–1159.e1144 (2022).
pubmed: 34995526 doi: 10.1053/j.gastro.2021.12.282
Malham, M. et al. Paediatric onset inflammatory bowel disease is a distinct and aggressive phenotype—a comparative population-based study. GastroHep 1, 266–273 (2019).
doi: 10.1002/ygh2.368
Fuller, M. K. Pediatric inflammatory bowel Disease: Special considerations. Surg. Clin. North Am. 99, 1177–1183 (2019).
pubmed: 31676056 doi: 10.1016/j.suc.2019.08.008
Schoepfer, A. M. et al. Diagnostic delay in Crohn’s disease is associated with a complicated disease course and increased operation rate. Am. J. Gastroenterol. 108, 1744–1753 (2013). quiz 1754.
pubmed: 23978953 doi: 10.1038/ajg.2013.248
Burisch, J. et al. Proximal disease extension in patients with limited ulcerative colitis: A Danish population-based inception cohort. J. Crohns Colitis 11, 1200–1204 (2017).
pubmed: 28486626 pmcid: 6279091 doi: 10.1093/ecco-jcc/jjx066
Colombel, J. F. et al. Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet 390, 2779–2789 (2017).
pubmed: 29096949 doi: 10.1016/S0140-6736(17)32641-7
Ungaro, R. C. et al. Deep remission at 1 year prevents progression of early Crohn’s disease. Gastroenterology 159, 139–147 (2020).
pubmed: 32224129 doi: 10.1053/j.gastro.2020.03.039
Oliveira, S. B. & Monteiro, I. M. Diagnosis and management of inflammatory bowel disease in children. BMJ 357, j2083 (2017).
pubmed: 28566467 pmcid: 6888256 doi: 10.1136/bmj.j2083
Levine, A. et al. ESPGHAN Revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 58, 795–806 (2014).
pubmed: 24231644 doi: 10.1097/MPG.0000000000000239
van Rheenen, P. F., Van de Vijver, E. & Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ 341, c3369 (2010).
pubmed: 20634346 pmcid: 2904879 doi: 10.1136/bmj.c3369
Fan, F. et al. Lipidomic profiling in inflammatory bowel disease: Comparison between ulcerative Colitis and Crohn’s Disease. Inflamm. Bowel Dis. 21, 1511–1518 (2015).
pubmed: 25895111 doi: 10.1097/MIB.0000000000000394
Iwatani, S. et al. Novel mass spectrometry‐based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 35, 1355–1364 (2020).
pubmed: 32285970 doi: 10.1111/jgh.15067
Guan, S. et al. UPLC–QTOF-MS-based plasma lipidomic profiling reveals biomarkers for inflammatory bowel disease diagnosis. J. proteome Res. 19, 600–609 (2019).
pubmed: 31821004 doi: 10.1021/acs.jproteome.9b00440
Scoville, E. A. et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 14, 1–12 (2018).
doi: 10.1007/s11306-017-1311-y
Hua, X. et al. Inflammatory bowel disease is associated with prediagnostic perturbances in metabolic pathways. Gastroenterology 164, 147–150.e142 (2023).
pubmed: 36122699 doi: 10.1053/j.gastro.2022.09.007
Vila A. V. et al. Faecal metabolome and its determinants in inflammatory bowel disease. Gut, gutjnl-2022-328048 (2023).
Ferru-Clément, R. et al. Serum lipidomic screen identifies key metabolites, pathways, and disease classifiers in Crohn’s disease. Inflamm. Bowel Dis. 29, 1024–1037 (2023).
pubmed: 36662167 pmcid: 10320374 doi: 10.1093/ibd/izac281
Carroll, M. W. et al. The impact of inflammatory bowel disease in Canada 2018: children and adolescents with IBD. J. Can. Assoc. Gastroenterol. 2, S49–S67 (2019).
pubmed: 31294385 doi: 10.1093/jcag/gwy056
Lijmer, J. G. et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282, 1061–1066 (1999).
pubmed: 10493205 doi: 10.1001/jama.282.11.1061
Daniluk, U. et al. Untargeted metabolomics and inflammatory markers profiling in children with Crohn’s disease and ulcerative colitis—A preliminary study. Inflamm. Bowel Dis. 25, 1120–1128 (2019).
pubmed: 30772902 doi: 10.1093/ibd/izy402
An, D., Na, C., Bielawski, J., Hannun, Y. A. & Kasper, D. L. Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc. Natl Acad. Sci. USA 108, 4666–4671 (2011).
pubmed: 20855611 doi: 10.1073/pnas.1001501107
Duan, R. D. & Nilsson, A. Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62–72 (2009).
pubmed: 19027789 doi: 10.1016/j.plipres.2008.04.003
Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).
pubmed: 34587385 doi: 10.1056/NEJMoa2033617
Ehehalt, R., Braun, A., Karner, M., Füllekrug, J. & Stremmel, W. Phosphatidylcholine as a constituent in the colonic mucosal barrier-physiological and clinical relevance. Biochim Biophys. Acta 1801, 983–993 (2010).
pubmed: 20595010 doi: 10.1016/j.bbalip.2010.05.014
Ehehalt, R. et al. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray‐tandem mass spectrometry. Scand. J. Gastroenterol. 39, 737–742 (2004).
pubmed: 15513358 doi: 10.1080/00365520410006233
Braun, A. et al. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. bowel Dis. 15, 1705–1720 (2009).
pubmed: 19504612 doi: 10.1002/ibd.20993
Bazarganipour, S. et al. The lipid status in patients with ulcerative colitis: Sphingolipids are disease-dependent regulated. J. Clin. Med. 8, 971 (2019).
pubmed: 31277430 pmcid: 6678307 doi: 10.3390/jcm8070971
Diab, J. et al. Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm. Bowel Dis. 25, 1780–1787 (2019).
pubmed: 31077307 doi: 10.1093/ibd/izz098
Horta, D. et al. Analysis of the association between fatigue and the plasma lipidomic profile of inflammatory bowel disease patients. J. Proteome Res. 20, 381–392 (2020).
pubmed: 32969224 doi: 10.1021/acs.jproteome.0c00462
Murgia, A. et al. Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics 14, 1–14 (2018).
doi: 10.1007/s11306-018-1439-4
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433 doi: 10.1007/s13238-017-0423-5
Facciotti, F. et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13, 474–480 (2012).
pubmed: 22426352 doi: 10.1038/ni.2245
Van Kaer, L. & Wu, L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol. 9, 519 (2018).
pubmed: 29593743 pmcid: 5859017 doi: 10.3389/fimmu.2018.00519
Stremmel, W. et al. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut 54, 966–971 (2005).
pubmed: 15951544 pmcid: 1774598 doi: 10.1136/gut.2004.052316
Nyström N. et al. Mucosal and plasma metabolomes in new-onset paediatric inflammatory bowel disease: correlations with disease characteristics and plasma inflammation protein markers. J Crohns Colitis. 17, 418–432 (2022).
Hyams, J. S. et al. Development and validation of a pediatric Crohn’s disease activity index. J. Pediatr. Gastroenterol. Nutr. 12, 439–447 (1991).
pubmed: 1678008
Kappelman, M. D. et al. Short pediatric Crohn’s disease activity index for quality improvement and observational research. Inflamm. Bowel Dis. 17, 112–117 (2010).
pubmed: 20812330 doi: 10.1002/ibd.21452
Turner, D. et al. Appraisal of the pediatric ulcerative colitis activity index (PUCAI). Inflamm. Bowel Dis. 15, 1218–1223 (2009).
pubmed: 19161178 doi: 10.1002/ibd.20867
Turner, D. et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: A prospective multicenter study. Gastroenterology 133, 423–432 (2007).
pubmed: 17681163 doi: 10.1053/j.gastro.2007.05.029
Attauabi, M. et al. Influence of genetics, immunity and the microbiome on the prognosis of inflammatory bowel disease (IBD Prognosis Study): The protocol for a Copenhagen IBD Inception Cohort Study. BMJ Open 12, e055779 (2022).
pubmed: 35760545 pmcid: 9237907 doi: 10.1136/bmjopen-2021-055779
Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 1–11 (2010).
doi: 10.1186/1471-2105-11-395
Lehmann, R. From bedside to bench—practical considerations to avoid pre-analytical pitfalls and assess sample quality for high-resolution metabolomics and lipidomics analyses of body fluids. Anal. Bioanal. Chem. 413, 5567–5585 (2021).
pubmed: 34159398 pmcid: 8410705 doi: 10.1007/s00216-021-03450-0
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
pubmed: 16632515 doi: 10.1093/biostatistics/kxj037
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Series B (Methodological) 57, 289–300 (1995).
Breheny, P. & Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl Stat. 5, 232–253 (2011).
pubmed: 22081779 pmcid: 3212875 doi: 10.1214/10-AOAS388
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).
pubmed: 7063747 doi: 10.1148/radiology.143.1.7063747
Sundström, J., Byberg, L., Gedeborg, R., Michaëlsson, K. & Berglund, L. Useful tests of usefulness of new risk factors: Tools for assessing reclassification and discrimination. Scand. J. Public Health 39, 439–441 (2011).
pubmed: 21270137 doi: 10.1177/1403494810396556

Auteurs

Samira Salihovic (S)

School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Niklas Nyström (N)

Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.

Charlotte Bache-Wiig Mathisen (CB)

Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway.

Robert Kruse (R)

Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Christine Olbjørn (C)

Department of Pediatrics and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.

Svend Andersen (S)

Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway.

Alexandra J Noble (AJ)

Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
Biomedical Research Center, University of Oxford, Oxford, United Kingdom.

Maria Dorn-Rasmussen (M)

Department of Paediatric and Adolescence Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.

Igor Bazov (I)

School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Gøri Perminow (G)

Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway.

Randi Opheim (R)

Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway.

Trond Espen Detlie (TE)

Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway.

Gert Huppertz-Hauss (G)

Department of Gastroenterology, Telemark Hospital Trust, Skien, Norway.

Charlotte R H Hedin (CRH)

Karolinska Institutet, Department of Medicine Solna, Stockholm, Sweden.
Karolinska University Hospital, Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden.

Marie Carlson (M)

Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

Lena Öhman (L)

Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Maria K Magnusson (MK)

Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Åsa V Keita (ÅV)

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Johan D Söderholm (JD)

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Mauro D'Amato (M)

IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain.
Department of Medicine & Surgery, LUM University, Casamassima, Italy.

Matej Orešič (M)

School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

Vibeke Wewer (V)

Department of Paediatric and Adolescence Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.

Jack Satsangi (J)

Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
Biomedical Research Center, University of Oxford, Oxford, United Kingdom.

Carl Mårten Lindqvist (CM)

School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Johan Burisch (J)

Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
Gastrounit, medical division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.

Holm H Uhlig (HH)

Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
Biomedical Research Center, University of Oxford, Oxford, United Kingdom.
Department of Paediatrics, University of Oxford, Oxford, UK.

Dirk Repsilber (D)

School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Tuulia Hyötyläinen (T)

School of Science and Technology, Örebro University, Örebro, Sweden.

Marte Lie Høivik (ML)

Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway.

Jonas Halfvarson (J)

Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. jonas.halfvarson@regionorebrolan.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH