Low-calorie diet-induced weight loss is associated with altered brain connectivity and food desire in obesity.


Journal

Obesity (Silver Spring, Md.)
ISSN: 1930-739X
Titre abrégé: Obesity (Silver Spring)
Pays: United States
ID NLM: 101264860

Informations de publication

Date de publication:
03 Jun 2024
Historique:
revised: 23 02 2024
received: 31 10 2023
accepted: 31 03 2024
medline: 4 6 2024
pubmed: 4 6 2024
entrez: 4 6 2024
Statut: aheadofprint

Résumé

The main objective of this study is to better understand the effects of diet-induced weight loss on brain connectivity in response to changes in glucose levels in individuals with obesity. A total of 25 individuals with obesity, among whom 9 had a diagnosis of type 2 diabetes, underwent functional magnetic resonance imaging (fMRI) scans before and after an 8-week low-calorie diet. We used a two-step hypereuglycemia clamp approach to mimic the changes in glucose levels observed in the postprandial period in combination with task-mediated fMRI intrinsic connectivity distribution (ICD) analysis. After the diet, participants lost an average of 3.3% body weight. Diet-induced weight loss led to a decrease in leptin levels, an increase in hunger and food intake, and greater brain connectivity in the parahippocampus, right hippocampus, and temporal cortex (limbic-temporal network). Group differences (with vs. without type 2 diabetes) were noted in several brain networks. Connectivity in the limbic-temporal and frontal-parietal brain clusters inversely correlated with hunger. A short-term low-calorie diet led to a multifaceted body response in patients with obesity, with an increase in connectivity in the limbic-temporal network (emotion and memory) and hormone and eating behavior changes that may be important for recovering the weight lost.

Identifiants

pubmed: 38831482
doi: 10.1002/oby.24046
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NCATS NIH HHS
ID : KL2 TR001862
Pays : United States
Organisme : NCATS NIH HHS
ID : TL1 TR001864
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NIDDK NIH HHS
ID : K23-DK-098286-02
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK123227
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01-DK099039UL1-DE-19586
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA026844
Pays : United States
Organisme : Yale Kavli Institute for Neuroscience, Kavli Innovative Research Award

Informations de copyright

© 2024 The Obesity Society.

Références

Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13(1):43‐56. doi:10.1111/j.1467‐789X.2011.00927.x
Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr. 2009;139(3):629‐632. doi:10.3945/jn.108.097618
De Silva A, Salem V, Matthews PM, Dhillo WS. The use of functional MRI to study appetite control in the CNS. Exp Diabetes Res. 2012;2012:764017. doi:10.1155/2012/764017
Cornier MA, Von Kaenel SS, Bessesen DH, Tregellas JR. Effects of overfeeding on the neuronal response to visual food cues. Am J Clin Nutr. 2007;86(4):965‐971. doi:10.1093/ajcn/86.4.965
Rothemund Y, Preuschhof C, Bohner G, et al. Differential activation of the dorsal striatum by high‐calorie visual food stimuli in obese individuals. Neuroimage. 2007;37(2):410‐421. doi:10.1016/j.neuroimage.2007.05.008
Kullmann S, Heni M, Veit R, et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. 2012;33(5):1052‐1061. doi:10.1002/hbm.21268
Pursey KM, Stanwell P, Callister RJ, Brain K, Collins CE, Burrows TL. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies. Front Nutr. 2014;1:7. doi:10.3389/fnut.2014.00007
Meng X, Huang D, Ao H, Wang X, Gao X. Food cue recruits increased reward processing and decreased inhibitory control processing in the obese/overweight: an activation likelihood estimation meta‐analysis of fMRI studies. Obes Res Clin Pract. 2020;14(2):127‐135. doi:10.1016/j.orcp.2020.02.004
Melanson KJ, Westerterp‐Plantenga MS, Saris WH, Smith FJ, Campfield LA. Blood glucose patterns and appetite in time‐blinded humans: carbohydrate versus fat. Am J Physiol. 1999;277:R337‐R345.
Kim J, Lam W, Wang Q, et al. In a free‐living setting, obesity is associated with greater food intake in response to a similar pre‐meal glucose nadir. J Clin Endocrinol Metab. 2019;104:3911‐3919. doi:10.1210/jc.2019‐00240
Pittas AG, Hariharan R, Stark PC, Hajduk CL, Greenberg AS, Roberts SB. Interstitial glucose level is a significant predictor of energy intake in free‐living women with healthy body weight. J Nutr. 2005;135(5):1070‐1074. doi:10.1093/jn/135.5.1070
Matsuda M, Liu Y, Mahankali S, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801‐1806.
Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage. 2005;24(2):363‐368. doi:10.1016/j.neuroimage.2004.07.073
Simon JJ, Lang PM, Rommerskirchen L, Bendszus M, Friederich HC. Hypothalamic reactivity and connectivity following intravenous glucose administration. Int J Mol Sci. 2023;24(8):737. doi:10.3390/ijms24087370
Page KA, Seo D, Belfort‐Deaguiar R, et al. Circulating glucose levels modulate neural control of desire for high‐calorie foods in humans. J Clin Invest. 2011;121:4161‐4169. doi:10.1172/JCI57873
Belfort‐DeAguiar R, Seo D, Lacadie C, et al. Humans with obesity have disordered brain responses to food images during physiological hyperglycemia. Am J Physiol Endocrinol Metab. 2018;314(5):E522‐E529. doi:10.1152/ajpendo.00335.2017
Legget KT, Wylie KP, Cornier MA, Berman BD, Tregellas JR. Altered between‐network connectivity in individuals prone to obesity. Physiol Behav. 2021;229:113242. doi:10.1016/j.physbeh.2020.113242
Prehn K, Jumpertz von Schwartzenberg R, Mai K, et al. Caloric restriction in older adults‐differential effects of weight loss and reduced weight on Brain structure and function. Cereb Cortex. 2017;27(3):1765‐1778. doi:10.1093/cercor/bhw008
Deckersbach T, Das SK, Urban LE, et al. Pilot randomized trial demonstrating reversal of obesity‐related abnormalities in reward system responsivity to food cues with a behavioral intervention. Nutr Diabetes. 2014;4:e129. doi:10.1038/nutd.2014.26
de Lima‐Junior JC, Velloso LA, Geloneze B. The obese brain—effects of bariatric surgery on energy balance neurocircuitry. Curr Atheroscler Rep. 2015;17(10):57. doi:10.1007/s11883‐015‐0536‐3
Olivo G, Zhou W, Sundbom M, et al. Resting‐state brain connectivity changes in obese women after Roux‐en‐Y gastric bypass surgery: a longitudinal study. Sci Rep. 2017;7(1):6616. doi:10.1038/s41598‐017‐06663‐5
Scheinost D, Benjamin J, Lacadie CM, et al. The intrinsic connectivity distribution: a novel contrast measure reflecting voxel level functional connectivity. Neuroimage. 2012;62(3):1510‐1519. doi:10.1016/j.neuroimage.2012.05.073
Zakiniaeiz Y, Scheinost D, Seo D, Sinha R, Constable RT. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals. Neuroimage Clin. 2017;13:181‐187. doi:10.1016/j.nicl.2016.10.019
Thomason ME, Scheinost D, Manning JH, et al. Weak functional connectivity in the human fetal brain prior to preterm birth. Sci Rep. 2017;7:39286. doi:10.1038/srep39286
Parikh L, Seo D, Lacadie C, et al. Differential resting state connectivity responses to glycemic state in type 1 diabetes. J Clin Endocrinol Metab. 2020;105(1):1‐13. doi:10.1210/jcem/dgz004
Hwang JJ, Jiang L, Hamza M, et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight. 2017;2(20):e95913. doi:10.1172/jci.insight.95913
ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: Standards of Care in Diabetes‐2023. Diabetes Care. 2023;46(suppl 1):S19‐S40. doi:10.2337/dc23‐S002
Belfort‐DeAguiar R, Seo D, Naik S, et al. Food image‐induced brain activation is not diminished by insulin infusion. Int J Obes (Lond). 2016;40(11):1679‐1686. doi:10.1038/ijo.2016.152
Raynor HA, Champagne CM. Position of the academy of nutrition and dietetics: interventions for the treatment of overweight and obesity in adults. J Acad Nutr Diet. 2016;116(1):129‐147. doi:10.1016/j.jand.2015.10.031
Zhou H, Lu W, Shi Y, et al. Impairments in cognition and resting‐state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci Lett. 2010;473(1):5‐10. doi:10.1016/j.neulet.2009.12.057
Musen G, Jacobson AM, Bolo NR, et al. Resting‐state brain functional connectivity is altered in type 2 diabetes. Diabetes. 2012;61(9):2375‐2379. doi:10.2337/db11‐1669
Hoogenboom WS, Marder TJ, Flores VL, et al. Cerebral white matter integrity and resting‐state functional connectivity in middle‐aged patients with type 2 diabetes. Diabetes. 2014;63(2):728‐738. doi:10.2337/db13‐1219
van Opstal AM, Wijngaarden MA, van der Grond J, Pijl H. Changes in brain activity after weight loss. Obes Sci Pract. 2019;5(5):459‐467. doi:10.1002/osp4.363
Davis JD, Wirtshafter D, Asin KE, Brief D. Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science. 1981;212(4490):81‐83.
Dubern B, Clement K. Leptin and leptin receptor‐related monogenic obesity. Biochimie. 2012;94(10):2111‐2115. doi:10.1016/j.biochi.2012.05.010
Koch CE, Lowe C, Pretz D, Steger J, Williams LM, Tups A. High‐fat diet induces leptin resistance in leptin‐deficient mice. J Neuroendocrinol. 2014;26(2):58‐67. doi:10.1111/jne.12131
Knuth ND, Johannsen DL, Tamboli RA, et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity (Silver Spring). 2014;22(12):2563‐2569. doi:10.1002/oby.20900
Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short‐term starvation in healthy men. J Clin Invest. 2003;111(9):1409‐1421. doi:10.1172/JCI17490
Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481‐1486. doi:10.2337/dc10‐2415
Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400‐409. doi:10.1016/j.cmet.2008.03.007

Auteurs

Hai Hoang (H)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.

Cheryl Lacadie (C)

Department of Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.

Janice Hwang (J)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.
Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.

Katherine Lam (K)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.

Ahmed Elshafie (A)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.

Samuel B Rosenberg (SB)

Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.

Charles Watt (C)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.

Rajita Sinha (R)

Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.

R Todd Constable (RT)

Department of Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.

Mary Savoye (M)

Department of Pediatrics, Pediatric Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.

Dongju Seo (D)

Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.

Renata Belfort-DeAguiar (R)

Department of Internal Medicine, Endocrinology Section, Yale University School of Medicine, New Haven, Connecticut, USA.
Division of Diabetes, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.

Classifications MeSH