Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
04 Jun 2024
Historique:
received: 05 12 2023
accepted: 17 04 2024
medline: 5 6 2024
pubmed: 5 6 2024
entrez: 4 6 2024
Statut: aheadofprint

Résumé

SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.

Identifiants

pubmed: 38834915
doi: 10.1038/s41594-024-01320-8
pii: 10.1038/s41594-024-01320-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
pubmed: 11237011 doi: 10.1038/35057062
de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).
pubmed: 22144907 pmcid: 3228813 doi: 10.1371/journal.pgen.1002384
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
pubmed: 35357919 pmcid: 9186530 doi: 10.1126/science.abj6987
Ostertag, E. M., Goodier, J. L., Zhang, Y. & Kazazian, H. H. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73, 1444–1451 (2003).
pubmed: 14628287 pmcid: 1180407 doi: 10.1086/380207
Wang, H. et al. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354, 994–1007 (2005).
pubmed: 16288912 doi: 10.1016/j.jmb.2005.09.085
Kazazian, H. H. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).
pubmed: 2831458 doi: 10.1038/332164a0
Batzer, M. A. et al. Amplification dynamics of human-specific (HS) Alu family members. Nucleic Acids Res. 19, 3619–3623 (1991).
pubmed: 1649453 pmcid: 328388 doi: 10.1093/nar/19.13.3619
Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).
pubmed: 12682288 pmcid: 154336 doi: 10.1073/pnas.0831042100
Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).
pubmed: 20602998 pmcid: 3013285 doi: 10.1016/j.cell.2010.05.021
Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).
pubmed: 31515540 doi: 10.1038/s41576-019-0165-8
Hancks, D. C. & Kazazian, H. H. SVA retrotransposons: evolution and genetic instability. Semin. Cancer Biol. 20, 234–245 (2010).
pubmed: 20416380 pmcid: 2945828 doi: 10.1016/j.semcancer.2010.04.001
Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).
pubmed: 35357925 pmcid: 9301658 doi: 10.1126/science.abk3112
Feusier, J. et al. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 29, 1567–1577 (2019).
pubmed: 31575651 pmcid: 6771411 doi: 10.1101/gr.247965.118
van Bree, E. J. et al. A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Res. 32, 656–670 (2022).
pubmed: 35332097 pmcid: 8997352 doi: 10.1101/gr.275515.121
Jönsson, M. E., Garza, R., Johansson, P. A. & Jakobsson, J. Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet. 36, 610–623 (2020).
pubmed: 32499105 doi: 10.1016/j.tig.2020.05.004
Hancks, D. C. & Kazazian, H. H. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012).
pubmed: 22406018 pmcid: 3376660 doi: 10.1016/j.gde.2012.02.006
Savage, A. L. et al. An evaluation of a SVA retrotransposon in the FUS promoter as a transcriptional regulator and its association to ALS. PLoS ONE 9, e90833 (2014).
pubmed: 24608899 pmcid: 3946630 doi: 10.1371/journal.pone.0090833
Savage, A. L., Bubb, V. J., Breen, G. & Quinn, J. P. Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol. Biol. 13, 101 (2013).
pubmed: 23692647 pmcid: 3667099 doi: 10.1186/1471-2148-13-101
Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735 (2019).
pubmed: 31006620 pmcid: 6509360 doi: 10.1016/j.stem.2019.03.012
Trizzino, M., Kapusta, A. & Brown, C. D. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468 (2018).
pubmed: 29914366 pmcid: 6006921 doi: 10.1186/s12864-018-4850-3
Trizzino, M. et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 27, 1623–1633 (2017).
pubmed: 28855262 pmcid: 5630026 doi: 10.1101/gr.218149.116
Patoori, S., Barnada, S. M., Large, C., Murray, J. I. & Trizzino, M. Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Development 149, dev200413 (2022).
pubmed: 36052683 pmcid: 9641669 doi: 10.1242/dev.200413
Pfaff, A. L., Bubb, V. J., Quinn, J. P. & Koks, S. Reference SVA insertion polymorphisms are associated with Parkinson’s Disease progression and differential gene expression. NPJ Parkinsons Dis. 7, 44 (2021).
pubmed: 34035310 pmcid: 8149882 doi: 10.1038/s41531-021-00189-4
Hancks, D. C. & Kazazian, H. H.Jr Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).
pubmed: 27158268 pmcid: 4859970 doi: 10.1186/s13100-016-0065-9
Nakamura, Y. et al. SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int J. Hematol. 102, 134–139 (2015).
pubmed: 25739383 doi: 10.1007/s12185-015-1765-5
Vogt, J. et al. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 15, R80 (2014).
pubmed: 24958239 pmcid: 4229983 doi: 10.1186/gb-2014-15-6-r80
Pfaff, A. L., Singleton, L. M. & Kõks, S. Mechanisms of disease-associated SINE–VNTR–Alus. Exp. Biol. Med. (Maywood) 247, 756–764 (2022).
pubmed: 35387528 pmcid: 9134764 doi: 10.1177/15353702221082612
Fröhlich, A. et al. CRISPR deletion of a SINE–VNTR–Alu (SVA_67) retrotransposon demonstrates its ability to differentially modulate gene expression at the MAPT locus. Front. Neurol. 14, 1273036 (2023).
pubmed: 37840928 pmcid: 10570551 doi: 10.3389/fneur.2023.1273036
Lee, L. V., Pascasio, F. M., Fuentes, F. D. & Viterbo, G. H. Torsion dystonia in Panay, Philippines. Adv. Neurol. 14, 137–151 (1976).
pubmed: 941767
Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909 (2018).
pubmed: 29474918 pmcid: 5831509 doi: 10.1016/j.cell.2018.02.011
Bragg, D. C., Sharma, N. & Ozelius, L. J. X-linked dystonia-parkinsonism: recent advances. Curr. Opin. Neurol. 32, 604–609 (2019).
pubmed: 31116117 pmcid: 7243267 doi: 10.1097/WCO.0000000000000708
Makino, S. et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am. J. Hum. Genet. 80, 393–406 (2007).
pubmed: 17273961 pmcid: 1821114 doi: 10.1086/512129
Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883 (2017).
pubmed: 28700586 pmcid: 5529029 doi: 10.1371/journal.pgen.1006883
Bragg, D. C. et al. Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc. Natl Acad. Sci. USA 114, E11020–E11028 (2017).
pubmed: 29229810 pmcid: 5754783 doi: 10.1073/pnas.1712526114
Ito, N. et al. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells. Dis. Model Mech. 9, 451–462 (2016).
pubmed: 26769797 pmcid: 4852502
Lee, L. V. et al. The unique phenomenology of sex-linked dystonia parkinsonism (XDP, DYT3, ‘Lubag’). Int J. Neurosci. 121 (Suppl. 1), 3–11 (2011).
Falk, A. et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE 7, e29597 (2012).
pubmed: 22272239 pmcid: 3260177 doi: 10.1371/journal.pone.0029597
Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).
pubmed: 26393776 doi: 10.1146/annurev-cellbio-100814-125514
Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 16 (2016).
pubmed: 27525044 pmcid: 4982230 doi: 10.1186/s13100-016-0070-z
Deniz, Ö., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).
pubmed: 30867571 doi: 10.1038/s41576-019-0106-6
Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).
pubmed: 28273063 doi: 10.1038/nature21683
Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).
pubmed: 25274305 pmcid: 4268317 doi: 10.1038/nature13760
Haring, N. L. et al. ZNF91 deletion in human embryonic stem cells leads to ectopic activation of SVA retrotransposons and up-regulation of KRAB zinc finger gene clusters. Genome Res. 31, 551–563 (2021).
pubmed: 33722937 pmcid: 8015857 doi: 10.1101/gr.265348.120
Garza, R. et al. LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. Sci. Adv. 9, eadh9543 (2023).
pubmed: 37910626 pmcid: 10619931 doi: 10.1126/sciadv.adh9543
Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).
pubmed: 20075919 doi: 10.1038/nature08674
Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).
pubmed: 9260521 doi: 10.1016/S0168-9525(97)01181-5
Macia, A. et al. Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Res. 27, 335–348 (2017).
pubmed: 27965292 pmcid: 5340962 doi: 10.1101/gr.206805.116
Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).
pubmed: 19657334 pmcid: 2909034 doi: 10.1038/nature08248
Jönsson, M. E. et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat. Commun. 10, 3182 (2019).
pubmed: 31320637 pmcid: 6639357 doi: 10.1038/s41467-019-11150-8
Cheetham, S. W., Kindlova, M. & Ewing, A. D. Methylartist: tools for visualizing modified bases from nanopore sequence data. Bioinformatics 38, 3109–3112 (2022).
pubmed: 35482479 pmcid: 9154218 doi: 10.1093/bioinformatics/btac292
Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928 (2020).
pubmed: 33186547 doi: 10.1016/j.molcel.2020.10.024
Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).
pubmed: 21030646 pmcid: 2989926 doi: 10.1126/science.1190614
Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).
pubmed: 11498579 doi: 10.1126/science.1063443
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).
pubmed: 11784103 doi: 10.1006/dbio.2001.0501
Fulka, H., Mrazek, M., Tepla, O. & Fulka, J. Jr DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703–708 (2004).
Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).
pubmed: 25079558 pmcid: 4178976 doi: 10.1038/nature13581
Walter, M., Teissandier, A., Pérez-Palacios, R. & Bourc’his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5, e11418 (2016).
pubmed: 26814573 pmcid: 4769179 doi: 10.7554/eLife.11418
Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).
pubmed: 20164836 doi: 10.1038/nature08858
Rowe, H. M. et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 23, 452–461 (2013).
pubmed: 23233547 pmcid: 3589534 doi: 10.1101/gr.147678.112
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117 (1998).
pubmed: 9771701 doi: 10.1038/2413
Wiznerowicz, M. et al. The Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J. Biol. Chem. 282, 34535–34541 (2007).
pubmed: 17893143 doi: 10.1074/jbc.M705898200
Jönsson, M. E. et al. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 40, e106423 (2021).
pubmed: 33644903 pmcid: 8090857 doi: 10.15252/embj.2020106423
Rowe, H. M. et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 140, 519–529 (2013).
pubmed: 23293284 doi: 10.1242/dev.087585
Turelli, P. et al. Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. Sci. Adv. 6, eaba3200 (2020).
pubmed: 32923624 pmcid: 7455193 doi: 10.1126/sciadv.aba3200
Quenneville, S. et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766–773 (2012).
pubmed: 23041315 pmcid: 3677399 doi: 10.1016/j.celrep.2012.08.043
Agostinho de Sousa, J. et al. Epigenetic dynamics during capacitation of naïve human pluripotent stem cells. Sci. Adv. 9, eadg1936 (2023).
pubmed: 37774033 pmcid: 10541016 doi: 10.1126/sciadv.adg1936
Nichols, J. & Smith, A. Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4, a008128 (2012).
pubmed: 22855723 pmcid: 3405859 doi: 10.1101/cshperspect.a008128
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
pubmed: 1606615 doi: 10.1016/0092-8674(92)90611-F
Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).
pubmed: 25822089 pmcid: 4414868 doi: 10.1038/ng.3258
Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).
pubmed: 32576954 doi: 10.1038/s41576-020-0251-y
Shen, M. R. et al. The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc. Natl Acad. Sci. USA 98, 14714–14719 (2001).
pubmed: 11724933 pmcid: 64747 doi: 10.1073/pnas.251388798
Hiki, K. et al. Cloning, characterization, and chromosomal location of a novel human K
pubmed: 10187864 doi: 10.1074/jbc.274.15.10661
Rosmarin, A. G., Resendes, K. K., Yang, Z., McMillan, J. N. & Fleming, S. L. GA-binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and protein–protein interactions. Blood Cells Mol. Dis. 32, 143–154 (2004).
pubmed: 14757430 doi: 10.1016/j.bcmd.2003.09.005
Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).
pubmed: 11715049 doi: 10.1038/35099076
Sulovari, A. et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl Acad. Sci. USA 116, 23243–23253 (2019).
pubmed: 31659027 pmcid: 6859368 doi: 10.1073/pnas.1912175116
Hancks, D. C., Ewing, A. D., Chen, J. E., Tokunaga, K. & Kazazian, H. H. Jr Exon-trapping mediated by the human retrotransposon SVA. Genome Res. 19, 1983–1991 (2009).
Lüth, T. et al. Elucidating hexanucleotide repeat number and methylation within the X-linked dystonia-parkinsonism (XDP)-related SVA retrotransposon in TAF1 with nanopore sequencing. Genes 13, 126 (2022).
pubmed: 35052466 pmcid: 8775018 doi: 10.3390/genes13010126
Prasad, R. & Jho, E. H. A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Rep. 52, 577–588 (2019).
pubmed: 31462381 doi: 10.5483/BMBRep.2019.52.10.215
Hernandez, D. G. et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20, 1164–1172 (2011).
pubmed: 21216877 pmcid: 3043665 doi: 10.1093/hmg/ddq561
Numata, S. et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am. J. Hum. Genet. 90, 260–272 (2012).
pubmed: 22305529 pmcid: 3276664 doi: 10.1016/j.ajhg.2011.12.020
Kim, H. S., Wadekar, R. V., Takenaka, O., Hyun, B. H. & Crow, T. J. Phylogenetic analysis of a retroposon family in African great apes. J. Mol. Evol. 49, 699–702 (1999).
pubmed: 10552051 doi: 10.1007/PL00000083
Wang, L., Norris, E. T. & Jordan, I. K. Human retrotransposon insertion polymorphisms are associated with health and disease via gene regulatory phenotypes. Front. Microbiol. 8, 1418 (2017).
pubmed: 28824558 pmcid: 5539088 doi: 10.3389/fmicb.2017.01418
Wang, L., Rishishwar, L., Mariño-Ramírez, L. & Jordan, I. K. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements. Nucleic Acids Res. 45, 2318–2328 (2017).
pubmed: 27998931
Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018).
pubmed: 29211708 doi: 10.1038/nature25179
Grassi, D. A., Jönsson, M. E., Brattås, P. L. & Jakobsson, J. TRIM28 and the control of transposable elements in the brain. Brain Res. 1705, 43–47 (2019).
pubmed: 29522722 doi: 10.1016/j.brainres.2018.02.043
Calvo-Garrido, J. et al. Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro. STAR Protoc. 2, 100528 (2021).
pubmed: 34027486 pmcid: 8121988 doi: 10.1016/j.xpro.2021.100528
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599 (2015).
pubmed: 26206304 pmcid: 4757950 doi: 10.1093/bioinformatics/btv422
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).
pubmed: 28079019 pmcid: 5310842 doi: 10.7554/eLife.21856
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Johansson, P. A. et al. A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell 29, 52–69 (2022).
pubmed: 34624206 doi: 10.1016/j.stem.2021.09.008
Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).
pubmed: 9306402 doi: 10.1038/nbt0997-871
Reyes, C. J., Asano, K., Todd, P. K., Klein, C. & Rakovic, A. Repeat-associated non-AUG translation of AGAGGG repeats that cause X-linked dystonia-parkinsonism. Mov. Disord. 37, 2284–2289 (2022).
pubmed: 35971992 doi: 10.1002/mds.29183
Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).
pubmed: 26076426 doi: 10.1038/nmeth.3444
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191

Auteurs

Vivien Horváth (V)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Raquel Garza (R)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Marie E Jönsson (ME)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Pia A Johansson (PA)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Anita Adami (A)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Georgia Christoforidou (G)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Ofelia Karlsson (O)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Laura Castilla Vallmanya (L)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Symela Koutounidou (S)

Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Patricia Gerdes (P)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Ninoslav Pandiloski (N)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Christopher H Douse (CH)

Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.

Johan Jakobsson (J)

Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden. johan.jakobsson@med.lu.se.

Classifications MeSH