Beta-blocker use and breast cancer outcomes: a meta-analysis.

Beta blockers Breast cancer Meta analysis Mortality Pharmacoepidemiology

Journal

Breast cancer research and treatment
ISSN: 1573-7217
Titre abrégé: Breast Cancer Res Treat
Pays: Netherlands
ID NLM: 8111104

Informations de publication

Date de publication:
05 Jun 2024
Historique:
received: 08 11 2023
accepted: 18 01 2024
medline: 5 6 2024
pubmed: 5 6 2024
entrez: 5 6 2024
Statut: aheadofprint

Résumé

Beta blockers (BBs) are commonly used cardiovascular medications, and their association with breast cancer outcomes has been examined in several previous observational studies and meta-analyses. In this study, an updated meta-analysis was undertaken to ascertain the association between BBs and both breast cancer death (BCD) and breast cancer recurrence (BCR). Articles were sourced from various databases up until the 14th of August 2023. Effect estimates were pooled using the random effects model, and the Higgins I Twenty-four studies were included. Pooled results showed that there was no statistically significant association between BB use and both BCD (19 studies, hazard ratio = 0.90, 95% CI 0.78-1.04) and BCR (16 studies, HR = 0.87, 95% CI 0.71-1.08). After removing studies with ITB, the associations were attenuated towards the null. There was no effect modification for either outcome when stratifying by the exposure period or type of BB. There was clear evidence of publication bias for both outcomes. In this meta-analysis, we found no evidence of an association between BB use and both BCD and BCR. Removing studies with ITB attenuated the associations towards the null, but there was no effect modification by the exposure period or type of BB.

Identifiants

pubmed: 38837086
doi: 10.1007/s10549-024-07263-4
pii: 10.1007/s10549-024-07263-4
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Auckland Medical Research Foundation
ID : 1217004
Organisme : Auckland Medical Research Foundation
ID : 1118017

Informations de copyright

© 2024. The Author(s).

Références

Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660 pubmed: 33538338
Land LH, Dalton SO, Jensen MB et al (2012) Influence of comorbidity on the effect of adjuvant treatment and age in patients with early-stage breast cancer. Br J Cancer 107:1901–1907. https://doi.org/10.1038/bjc.2012.472
doi: 10.1038/bjc.2012.472 pubmed: 23079577 pmcid: 3504938
Mehta LS, Watson KE, Barac A et al (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137:e30–e66
doi: 10.1161/CIR.0000000000000556 pubmed: 29437116 pmcid: 6722327
Ministry of Health. Annual update of key results 2018/19: New Zealand Health Survey. https://www.health.govt.nz/publication/annual-update-key-results-2018-19-new-zealand-health-survey (Date Accessed 2019)
Ford ES, Li C, Zhao G et al (2010) Trends in low-risk lifestyle factors among adults in the United States: findings from the behavioral risk factor surveillance system 1996–2007. Prev Med 51:403–407. https://doi.org/10.1016/j.ypmed.2010.08.002
doi: 10.1016/j.ypmed.2010.08.002 pubmed: 20708637
Ram CV (2010) Beta-blockers in hypertension. Am J Cardiol 106:1819–1825. https://doi.org/10.1016/j.amjcard.2010.08.023
doi: 10.1016/j.amjcard.2010.08.023 pubmed: 21126627
Aronow WS (2010) Current role of beta-blockers in the treatment of hypertension. Expert Opin Pharmacother 11:2599–2607. https://doi.org/10.1517/14656566.2010.482561
doi: 10.1517/14656566.2010.482561 pubmed: 20426702
Jackson R, Barham P, Bills J et al (1993) Management of raised blood pressure in New Zealand: a discussion document. BMJ 307:107–110. https://doi.org/10.1136/bmj.307.6896.107
doi: 10.1136/bmj.307.6896.107 pubmed: 8343706 pmcid: 1693500
Best Practice Advocacy Centre New Zealand. Beta-blockers for cardiovascular conditions: one size does not fit all patients. https://bpac.org.nz/2017/beta-blockers.aspx (Date Accessed 2017)
Bangalore S, Messerli FH, Kostis JB et al (2007) Cardiovascular protection using beta-blockers: a critical review of the evidence. J Am Coll Cardiol 50:563–572. https://doi.org/10.1016/j.jacc.2007.04.060
doi: 10.1016/j.jacc.2007.04.060 pubmed: 17692739
Vandewalle B, Revillion F, Lefebvre J (1990) Functional beta-adrenergic receptors in breast cancer cells. J Cancer Res Clin Oncol 116:303–306
doi: 10.1007/BF01612908 pubmed: 2164516
Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206. https://doi.org/10.1158/1078-0432.CCR-11-0641
doi: 10.1158/1078-0432.CCR-11-0641 pubmed: 22186256
Tilan J, Kitlinska J (2010) Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression. J Oncol 2010:539706. https://doi.org/10.1155/2010/539706
doi: 10.1155/2010/539706 pubmed: 20508839 pmcid: 2874925
Vaklavas C, Chatzizisis YS, Tsimberidou AM (2011) Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 130:177–190. https://doi.org/10.1016/j.pharmthera.2011.01.009
doi: 10.1016/j.pharmthera.2011.01.009 pubmed: 21277894
Sloan EK, Priceman SJ, Cox BF et al (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:7042–7052. https://doi.org/10.1158/0008-5472.CAN-10-0522
doi: 10.1158/0008-5472.CAN-10-0522 pubmed: 20823155 pmcid: 2940980
Childers WK, Hollenbeak CS, Cheriyath P (2015) Beta-blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer 15:426–431. https://doi.org/10.1016/j.clbc.2015.07.001
doi: 10.1016/j.clbc.2015.07.001 pubmed: 26516037
Raimondi S, Botteri E, Munzone E et al (2016) Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int J Cancer 139:212–219. https://doi.org/10.1002/ijc.30062
doi: 10.1002/ijc.30062 pubmed: 26916107
Kim HY, Jung YJ, Lee SH et al (2017) Is beta-blocker use beneficial in breast cancer? A meta-analysis. Oncology 92:264–268. https://doi.org/10.1159/000455143
doi: 10.1159/000455143 pubmed: 28132057
Yap A, Lopez-Olivo MA, Dubowitz J et al (2018) Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Br J Anaesth 121:45–57. https://doi.org/10.1016/j.bja.2018.03.024
doi: 10.1016/j.bja.2018.03.024 pubmed: 29935594
Li C, Li T, Tang R et al (2020) β-blocker use is not associated with improved clinical outcomes in women with breast cancer: a meta-analysis. Biosci Rep. https://doi.org/10.1042/BSR20200721
Caparica R, Bruzzone M, Agostinetto E et al (2021) Beta-blockers in early-stage breast cancer: a systematic review and meta-analysis. ESMO Open 6:100066. https://doi.org/10.1016/j.esmoop.2021.100066
doi: 10.1016/j.esmoop.2021.100066 pubmed: 33639601 pmcid: 7921512
Xie Y, Wang M, Xu P et al (2021) Association between antihypertensive medication use and breast cancer: a systematic review and meta-analysis. Front Pharmacol 12:609901. https://doi.org/10.3389/fphar.2021.609901
doi: 10.3389/fphar.2021.609901 pubmed: 34054514 pmcid: 8155668
Chang A, Botteri E, Gillis RD et al (2023) Beta-blockade enhances anthracycline control of metastasis in triple-negative breast cancer. Sci Transl Med 15:1147. https://doi.org/10.1126/scitranslmed.adf1147
doi: 10.1126/scitranslmed.adf1147
Hsieh HH, Wu TY, Chen CH et al (2023) Survival outcomes of beta-blocker usage in HER2-positive advanced breast cancer patients: a retrospective cohort study. Ther Adv Drug Saf 14:20420986231181336. https://doi.org/10.1177/20420986231181338
doi: 10.1177/20420986231181338 pubmed: 37359444 pmcid: 10288415
Suissa S (2008) Immortal time bias in pharmacoepidemiology. Am J Epidemiol 167:492–499
doi: 10.1093/aje/kwm324 pubmed: 18056625
Lang K, Drell TLT, Lindecke A et al (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112:231–238. https://doi.org/10.1002/ijc.20410
doi: 10.1002/ijc.20410 pubmed: 15352035
Le CP, Nowell CJ, Kim-Fuchs C et al (2016) Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7:10634. https://doi.org/10.1038/ncomms10634
doi: 10.1038/ncomms10634 pubmed: 26925549 pmcid: 4773495
Thaker PH, Han LY, Kamat AA et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944. https://doi.org/10.1038/nm1447
doi: 10.1038/nm1447 pubmed: 16862152
Hiller JG, Cole SW, Crone EM et al (2020) Preoperative beta-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res 26:1803–1811. https://doi.org/10.1158/1078-0432.CCR-19-2641
doi: 10.1158/1078-0432.CCR-19-2641 pubmed: 31754048
Hiller JG, Perry NJ, Poulogiannis G et al (2018) Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol 15:205–218. https://doi.org/10.1038/nrclinonc.2017.194
doi: 10.1038/nrclinonc.2017.194 pubmed: 29283170
Creed SJ, Le CP, Hassan M et al (2015) β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cell invasion. Breast Cancer Res 17:145. https://doi.org/10.1186/s13058-015-0655-3
doi: 10.1186/s13058-015-0655-3 pubmed: 26607426 pmcid: 4660629
Kim TH, Gill NK, Nyberg KD et al (2016) Cancer cells become less deformable and more invasive with activation of beta-adrenergic signaling. J Cell Sci 129:4563–4575. https://doi.org/10.1242/jcs.194803
doi: 10.1242/jcs.194803 pubmed: 27875276 pmcid: 5201020
Bucsek MJ, Qiao G, MacDonald CR et al (2017) β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res 77:5639–5651. https://doi.org/10.1158/0008-5472.CAN-17-0546
doi: 10.1158/0008-5472.CAN-17-0546 pubmed: 28819022 pmcid: 5645237
Cumpston M, Li T, Page MJ et al. (2019) Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 10: 142 doi: https://doi.org/10.1002/14651858.ED000142 .
doi: 10.1002/14651858.ED000142
Borenstein M, Hedges LV, Higgins JP et al (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111. https://doi.org/10.1002/jrsm.12
doi: 10.1002/jrsm.12 pubmed: 26061376
Lorona NC, Cook LS, Tang MC et al (2021) Antihypertensive medications and risks of recurrence and mortality in luminal, triple-negative, and HER2-overexpressing breast cancer. Cancer Causes Control 32:1375–1384. https://doi.org/10.1007/s10552-021-01485-3
doi: 10.1007/s10552-021-01485-3 pubmed: 34347212 pmcid: 8541909
Sørensen GV, Ganz PA, Cole SW et al (2013) Use of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and risk of breast cancer recurrence: a Danish nationwide prospective cohort study. J Clin Oncol 31:2265–2272. https://doi.org/10.1200/JCO.2012.43.9190
doi: 10.1200/JCO.2012.43.9190 pubmed: 23650417 pmcid: 3677839
Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557
doi: 10.1136/bmj.327.7414.557 pubmed: 12958120 pmcid: 192859
Borenstein M, Higgins JP (2013) Meta-analysis and subgroups. Prev Sci 14:134–143. https://doi.org/10.1007/s11121-013-0377-7
doi: 10.1007/s11121-013-0377-7 pubmed: 23479191
Baker WL, White CM, Cappelleri JC et al (2009) Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract 63:1426–1434. https://doi.org/10.1111/j.1742-1241.2009.02168.x
doi: 10.1111/j.1742-1241.2009.02168.x pubmed: 19769699
Higgins JP (2008) Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 37:1158–1160. https://doi.org/10.1093/ije/dyn204
doi: 10.1093/ije/dyn204 pubmed: 18832388
Sterne JA, Becker BJ, Egger M (2005) The funnel plot. In: Rothstein HR, Sutton AJ, Borenstein MS (eds) Publication bias in meta-analysis: prevention, assessment and adjustments: Wiley. New York, pp 76–98
Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25:3443–3457. https://doi.org/10.1002/sim.2380
doi: 10.1002/sim.2380 pubmed: 16345038
Powe DG, Voss MJ, Zanker KS et al (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1:628–638. https://doi.org/10.18632/oncotarget.101009
doi: 10.18632/oncotarget.101009 pubmed: 21317458 pmcid: 3248123
Barron TI, Connolly RM, Sharp L et al (2011) Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol 29:2635–2644. https://doi.org/10.1200/JCO.2010.33.5422
doi: 10.1200/JCO.2010.33.5422 pubmed: 21632503
Ganz PA, Habel LA, Weltzien EK et al (2011) Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: results from the LACE cohort. Breast Cancer Res Treat 129:549–556. https://doi.org/10.1007/s10549-011-1505-3
doi: 10.1007/s10549-011-1505-3 pubmed: 21479924 pmcid: 3145014
Botteri E, Munzone E, Rotmensz N et al (2013) Therapeutic effect of beta-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res Treat 140:567–575. https://doi.org/10.1007/s10549-013-2654-3
doi: 10.1007/s10549-013-2654-3 pubmed: 23912960
Cardwell CR, Coleman HG, Murray LJ et al (2013) Beta-blocker usage and breast cancer survival: a nested case-control study within a UK clinical practice research datalink cohort. Int J Epidemiol 42:1852–1861. https://doi.org/10.1093/ije/dyt196
doi: 10.1093/ije/dyt196 pubmed: 24536096
Chae YK, Brown EN, Lei X et al (2013) Use of ACE inhibitors and angiotensin receptor blockers and primary breast cancer outcomes. J Cancer 4:549–556. https://doi.org/10.7150/jca.6888
doi: 10.7150/jca.6888 pubmed: 23983819 pmcid: 3753529
Holmes MD, Hankinson SE, Feskanich D et al (2013) Beta blockers and angiotensin-converting enzyme inhibitors’ purported benefit on breast cancer survival may be explained by aspirin use. Breast Cancer Res Treat 139:507–513. https://doi.org/10.1007/s10549-013-2553-7
doi: 10.1007/s10549-013-2553-7 pubmed: 23649190 pmcid: 3683855
Cardwell CR, Pottegard A, Vaes E et al (2016) Propranolol and survival from breast cancer: a pooled analysis of European breast cancer cohorts. Breast Cancer Res 18:119. https://doi.org/10.1186/s13058-016-0782-5
doi: 10.1186/s13058-016-0782-5 pubmed: 27906047 pmcid: 5133766
Chen L, Chubak J, Boudreau DM et al (2017) Use of antihypertensive medications and risk of adverse breast cancer outcomes in a SEER-medicare population. Cancer Epidemiol Biomark Prev 26:1603–1610. https://doi.org/10.1158/1055-9965.EPI-17-0346
doi: 10.1158/1055-9965.EPI-17-0346
Musselman RP, Bennett S, Li W et al (2018) Association between perioperative beta blocker use and cancer survival following surgical resection. Eur J Surg Oncol 44:1164–1169. https://doi.org/10.1016/j.ejso.2018.05.012
doi: 10.1016/j.ejso.2018.05.012 pubmed: 29858097
Cui Y, Wen W, Zheng T et al (2019) Use of antihypertensive medications and survival rates for breast, colorectal, lung, or stomach cancer. Am J Epidemiol 188:1512–1528. https://doi.org/10.1093/aje/kwz106
doi: 10.1093/aje/kwz106 pubmed: 31062847 pmcid: 6670048
Santala EEE, Murto MO, Artama M et al (2020) Angiotensin receptor blockers associated with improved breast cancer survival-a nationwide cohort study from Finland. Cancer Epidemiol Biomark Prev 29:2376–2382. https://doi.org/10.1158/1055-9965.EPI-20-0711
doi: 10.1158/1055-9965.EPI-20-0711
Gillis RD, Botteri E, Chang A et al (2021) Carvedilol blocks neural regulation of breast cancer progression in vivo and is associated with reduced breast cancer mortality in patients. Eur J Cancer 147:106–116. https://doi.org/10.1016/j.ejca.2021.01.029
doi: 10.1016/j.ejca.2021.01.029 pubmed: 33639323
Løfling LL, Stoer NC, Sloan EK et al (2022) Beta-blockers and breast cancer survival by molecular subtypes: a population-based cohort study and meta-analysis. Br J Cancer 127:1086–1096. https://doi.org/10.1038/s41416-022-01891-7
doi: 10.1038/s41416-022-01891-7 pubmed: 35725814 pmcid: 9470740
Scott OW, Tin Tin S, Elwood JM et al (2022) Post-diagnostic beta blocker use and breast cancer-specific mortality: a population-based cohort study. Breast Cancer Res Treat 193:225–235. https://doi.org/10.1007/s10549-022-06528-0
doi: 10.1007/s10549-022-06528-0 pubmed: 35286523 pmcid: 8993732
Melhem-Bertrandt A, Chavez-Macgregor M, Lei X et al (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29:2645–2652. https://doi.org/10.1200/JCO.2010.33.4441
doi: 10.1200/JCO.2010.33.4441 pubmed: 21632501 pmcid: 3139371
Boudreau DM, Yu O, Chubak J et al (2014) Comparative safety of cardiovascular medication use and breast cancer outcomes among women with early stage breast cancer. Breast Cancer Res Treat 144:405–416. https://doi.org/10.1007/s10549-014-2870-5
doi: 10.1007/s10549-014-2870-5 pubmed: 24557337 pmcid: 3988288
Sakellakis M, Kostaki A, Starakis I et al (2014) Beta-blocker use and risk of recurrence in patients with early breast cancer. Chemotherapy 60:288–289. https://doi.org/10.1159/000371871
doi: 10.1159/000371871 pubmed: 25998892
Choy C, Raytis JL, Smith DD et al (2016) Inhibition of beta2-adrenergic receptor reduces triple-negative breast cancer brain metastases: the potential benefit of perioperative beta-blockade. Oncol Rep 35:3135–3142. https://doi.org/10.3892/or.2016.4710
doi: 10.3892/or.2016.4710 pubmed: 27035124 pmcid: 4869944
Spera G, Fresco R, Fung H et al (2017) Beta blockers and improved progression-free survival in patients with advanced HER2 negative breast cancer: a retrospective analysis of the ROSE/TRIO-012 study. Ann Oncol 28:1836–1841. https://doi.org/10.1093/annonc/mdx264
doi: 10.1093/annonc/mdx264 pubmed: 28520849
Santala EE, Murto MO, Artama M et al (2020) Angiotensin receptor blockers associated with improved breast cancer survival: a nationwide cohort study from Finland. Cancer Epidemiol Biomark Prev 29:2376–2382
doi: 10.1158/1055-9965.EPI-20-0711
Yang J, Zhang S, Jiang W (2023) Impact of beta blockers on breast cancer incidence and prognosis. Clin Breast Cancer 23(664–671):e21. https://doi.org/10.1016/j.clbc.2023.05.014
doi: 10.1016/j.clbc.2023.05.014
Levesque LE, Hanley JA, Kezouh A et al (2010) Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ 340:b5087. https://doi.org/10.1136/bmj.b5087
doi: 10.1136/bmj.b5087 pubmed: 20228141
Annabi B, Lachambre MP, Plouffe K et al (2009) Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion. Pharmacol Res 60:438–445. https://doi.org/10.1016/j.phrs.2009.05.005
doi: 10.1016/j.phrs.2009.05.005 pubmed: 19467330
Hajighasemi F, Hajighasemi S (2009) Effect of propranolol on angiogenic factors in human hematopoietic cell linesin vitro. Iran Biomed J 13:223–228
pubmed: 19946348
Lamy S, Lachambre MP, Lord-Dufour S et al (2010) Propranolol suppresses angiogenesis in vitro: inhibition of proliferation, migration, and differentiation of endothelial cells. Vascul Pharmacol 53:200–208. https://doi.org/10.1016/j.vph.2010.08.002
doi: 10.1016/j.vph.2010.08.002 pubmed: 20732454
Yap TA, Sandhu SK, Workman P et al (2010) Envisioning the future of early anticancer drug development. Nat Rev Cancer 10:514–523. https://doi.org/10.1038/nrc2870
doi: 10.1038/nrc2870 pubmed: 20535131
Pasquier E, Ciccolini J, Carre M et al (2011) Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2:797–809. https://doi.org/10.18632/oncotarget.343
doi: 10.18632/oncotarget.343 pubmed: 22006582 pmcid: 3248157
Reeder A, Attar M, Nazario L et al (2015) Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage. Br J Cancer 112:1461–1470. https://doi.org/10.1038/bjc.2015.133
doi: 10.1038/bjc.2015.133 pubmed: 25880007 pmcid: 4453678
Pasquier E, Street J, Pouchy C et al (2013) Beta-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer 108:2485–2494. https://doi.org/10.1038/bjc.2013.205
doi: 10.1038/bjc.2013.205 pubmed: 23695022 pmcid: 3694229
Wiysonge CS, Bradley HA, Volmink J et al (2017) Beta-blockers for hypertension. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002003.pub5
doi: 10.1002/14651858.CD002003.pub5 pubmed: 28902412 pmcid: 5621087
Nissen MD, Sloan EK, Mattarollo SR (2018) beta-adrenergic signaling impairs antitumor CD8(+) T-cell responses to B-cell lymphoma immunotherapy. Cancer Immunol Res 6:98–109. https://doi.org/10.1158/2326-6066.CIR-17-0401
doi: 10.1158/2326-6066.CIR-17-0401 pubmed: 29146881
Kwa MJ, Adams S (2018) Checkpoint inhibitors in triple-negative breast cancer (TNBC): where to go from here. Cancer 124:2086–2103
doi: 10.1002/cncr.31272 pubmed: 29424936

Auteurs

Oliver William Scott (OW)

Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand. o.scott@auckland.ac.nz.

Sandar TinTin (S)

Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand.

Alana Cavadino (A)

Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand.

J Mark Elwood (JM)

Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Building 507, 85 Park Road, Grafton, Auckland, 1023, New Zealand.

Classifications MeSH