Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.
GPX4
SLC7A11
colorectal cancer
curcumin
ferroptosis
p53
Journal
Phytotherapy research : PTR
ISSN: 1099-1573
Titre abrégé: Phytother Res
Pays: England
ID NLM: 8904486
Informations de publication
Date de publication:
04 Jun 2024
04 Jun 2024
Historique:
revised:
14
05
2024
received:
07
11
2023
accepted:
18
05
2024
medline:
5
6
2024
pubmed:
5
6
2024
entrez:
5
6
2024
Statut:
aheadofprint
Résumé
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 81573813
Organisme : The Science & Technology Department of Sichuan Province of China
ID : 2023NSFSC0653
Organisme : Sichuan Provincial Administration of Traditional Chinese Medicine of China
ID : 2021XYCZ007
Organisme : Sichuan Provincial Administration of Traditional Chinese Medicine of China
ID : 2021MS447
Organisme : Health Commission of Sichuan Province of China
ID : 21PJ107
Organisme : Excellent Talent Program of Chengdu University of Traditional Chinese Medicine of China
ID : GJJJ2021003
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., & Biamonte, F. (2020). Ferroptosis and cancer: Mitochondria meet the “iron maiden” cell death. Cells, 9(6), 1505. https://doi.org/10.3390/cells9061505
Bhatt, H. D., McClain, S. A., Lee, H. M., Zimmerman, T., Deng, J., Johnson, F., Gu, Y., & Golub, L. M. (2022). The maximum‐tolerated dose and pharmacokinetics of a novel chemically modified curcumin in rats. Journal of Experimental Pharmacology, 14, 73–85. https://doi.org/10.2147/JEP.S341927
Cao, X., Li, Y., Wang, Y., Yu, T., Zhu, C., Zhang, X., & Guan, J. (2022). Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One, 17(1), e0261370. https://doi.org/10.1371/journal.pone.0261370
Chen, H., Li, Z., Xu, J., Zhang, N., Chen, J., Wang, G., & Zhao, Y. (2023). Curcumin induces ferroptosis in follicular thyroid cancer by upregulating HO‐1 expression. Oxidative Medicine and Cellular Longevity, 2023, 6896790. https://doi.org/10.1155/2023/6896790
Chen, H., Wang, C., Liu, Z., He, X., Tang, W., He, L., Feng, Y., Liu, D., Yin, Y., & Li, T. (2022). Ferroptosis and its multifaceted role in cancer: Mechanisms and therapeutic approach. Antioxidants (Basel), 11(8), 1504. https://doi.org/10.3390/antiox11081504
Chen, L., He, M., Zhang, M., Sun, Q., Zeng, S., Zhao, H., Yang, H., Liu, M., Ren, S., Meng, X., & Xu, H. (2021). The role of non‐coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacology & Therapeutics, 226, 107868. https://doi.org/10.1016/j.pharmthera.2021.107868
Chen, M., Tan, A. H., & Li, J. (2023). Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutrition and Cancer, 75(2), 726–733. https://doi.org/10.1080/01635581.2022.2139398
Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: The role of ferroptosis in cancer. Nature Reviews. Clinical Oncology, 18(5), 280–296. https://doi.org/10.1038/s41571-020-00462-0
Du, R., Cheng, X., Ji, J., Lu, Y., Xie, Y., Wang, W., Xu, Y., & Zhang, Y. (2023). Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Scientific Reports, 13(1), 4463. https://doi.org/10.1038/s41598-023-31712-7
Fan, W. H., Wang, F. C., Jin, Z., Zhu, L., & Zhang, J. X. (2022). Curcumin synergizes with cisplatin to inhibit colon cancer through targeting the microRNA‐137‐glutaminase axis. Current Medical Science, 42(1), 108–117. https://doi.org/10.1007/s11596-021-2469-0
Feltrin, F. D. S., Agner, T., Sayer, C., & Lona, L. M. F. (2022). Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in Colloid and Interface Science, 300, 102582. https://doi.org/10.1016/j.cis.2021.102582
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure‐based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
Firouzjaei, A. A., Aghaee‐Bakhtiari, S. H., Tafti, A., Sharifi, K., Abadi, M., Rezaei, S., & Mohammadi‐Yeganeh, S. (2023). Impact of curcumin on ferroptosis‐related genes in colorectal cancer: Insights from in‐silico and in‐vitro studies. Cell Biochemistry and Function, 41(8), 1488–1502. https://doi.org/10.1002/cbf.3889
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein‐ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376. https://doi.org/10.3390/nu11102376
Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., Dai, X., Li, Z., & Wu, G. (2018). Ferroptosis: A novel anti‐tumor action for cisplatin. Cancer Research and Treatment, 50(2), 445–460. https://doi.org/10.4143/crt.2016.572
Hanggi, K., & Ruffell, B. (2023). Cell death, therapeutics, and the immune response in cancer. Trends in Cancer, 9(5), 381–396. https://doi.org/10.1016/j.trecan.2023.02.001
Hossain, M. S., Karuniawati, H., Jairoun, A. A., Urbi, Z., Ooi, J., John, A., Lim, Y. C., Kibria, K. M. K., Mohiuddin, A. K. M., Ming, L. C., Goh, K. W., & Hadi, M. A. (2022). Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel), 14(7), 1732. https://doi.org/10.3390/cancers14071732
Hsin, K. Y., Ghosh, S., & Kitano, H. (2013). Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 8(12), e83922. https://doi.org/10.1371/journal.pone.0083922
Huang, L., Li, W., Lu, Y., Ju, Q., & Ouyang, M. (2023). Iron metabolism in colorectal cancer. Frontiers in Oncology, 13, 1098501. https://doi.org/10.3389/fonc.2023.1098501
Iranshahy, M., Hanafi‐Bojd, M. Y., Aghili, S. H., Iranshahi, M., Nabavi, S. M., Saberi, S., Filosa, R., Nezhad, I. F., & Hasanpour, M. (2023). Curcumin‐loaded mesoporous silica nanoparticles for drug delivery: Synthesis, biological assays and therapeutic potential ‐ A review. RSC Advances, 13(32), 22250–22267. https://doi.org/10.1039/d3ra02772d
Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., Baer, R., & Gu, W. (2015). Ferroptosis as a p53‐mediated activity during tumour suppression. Nature, 520(7545), 57–62. https://doi.org/10.1038/nature14344
Joshi, P., Bisht, A., Paliwal, A., Dwivedi, J., & Sharma, S. (2023). Recent updates on clinical developments of curcumin and its derivatives. Phytotherapy Research, 37(11), 5109–5158. https://doi.org/10.1002/ptr.7974
Kang, R., Kroemer, G., & Tang, D. (2019). The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology & Medicine, 133, 162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074
Lewerenz, J., Ates, G., Methner, A., Conrad, M., & Maher, P. (2018). Oxytosis/ferroptosis‐(re‐) emerging roles for oxidative stress‐dependent non‐apoptotic cell death in diseases of the central nervous system. Frontiers in Neuroscience, 12, 214. https://doi.org/10.3389/fnins.2018.00214
Li, F. J., Long, H. Z., Zhou, Z. W., Luo, H. Y., Xu, S. G., & Gao, L. C. (2022). System X(c) (−)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug‐resistant solid tumor therapy. Frontiers in Pharmacology, 13, 910292. https://doi.org/10.3389/fphar.2022.910292
Li, G., Fang, S., Shao, X., Li, Y., Tong, Q., Kong, B., Chen, L., Wang, Y., Yang, J., Yu, H., Xie, X., & Zhang, J. (2021). Curcumin reverses NNMT‐induced 5‐fluorouracil resistance via increasing ROS and cell cycle arrest in colorectal cancer cells. Biomolecules, 11(9), 1295. https://doi.org/10.3390/biom11091295
Li, L., Wang, X., Xu, H., Liu, X., & Xu, K. (2022). Perspectives and mechanisms for targeting ferroptosis in the treatment of hepatocellular carcinoma. Frontiers in Molecular Biosciences, 9, 947208. https://doi.org/10.3389/fmolb.2022.947208
Li, R., Zhang, J., Zhou, Y., Gao, Q., Wang, R., Fu, Y., Zheng, L., & Yu, H. (2020). Transcriptome investigation and in vitro verification of curcumin‐induced HO‐1 as a feature of ferroptosis in breast cancer cells. Oxidative Medicine and Cellular Longevity, 2020, 3469840. https://doi.org/10.1155/2020/3469840
Lin, H., Chen, X., Zhang, C., Yang, T., Deng, Z., Song, Y., Huang, L., Li, F., Li, Q., Lin, S., & Jin, D. (2021). EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomedicine & Pharmacotherapy, 136, 111202. https://doi.org/10.1016/j.biopha.2020.111202
Liu, M. R., Zhu, W. T., & Pei, D. S. (2021). System xc(−): A key regulatory target of ferroptosis in cancer. Investigational New Drugs, 39(4), 1123–1131. https://doi.org/10.1007/s10637-021-01070-0
Liu, X., Tuerxun, H., Li, Y., Li, Y., He, Y., & Zhao, Y. (2022). Ferroptosis: Reviewing CRC with the third eye. Journal of Inflammation Research, 15, 6801–6812. https://doi.org/10.2147/JIR.S389290
Liu, Y., & Gu, W. (2022). p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death and Differentiation, 29(5), 895–910. https://doi.org/10.1038/s41418-022-00943-y
Liu, Z., Ma, H., & Lai, Z. (2023). The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 28(4), 1623. https://doi.org/10.3390/molecules28041623
Ming, T., Tao, Q., Tang, S., Zhao, H., Yang, H., Liu, M., Ren, S., & Xu, H. (2022). Curcumin: An epigenetic regulator and its application in cancer. Biomedicine & Pharmacotherapy, 156, 113956. https://doi.org/10.1016/j.biopha.2022.113956
Miyazaki, K., Xu, C., Shimada, M., & Goel, A. (2023). Curcumin and andrographis exhibit anti‐tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione peroxidase‐4 and ferroptosis suppressor protein‐1. Pharmaceuticals (Basel), 16(3), 383. https://doi.org/10.3390/ph16030383
Moghtaderi, H., Sepehri, H., Delphi, L., & Attari, F. (2018). Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA‐MB‐231. BioImpacts: BI, 8(3), 185–194. https://doi.org/10.15171/bi.2018.21
Moradi‐Marjaneh, R., Hassanian, S. M., Rahmani, F., Aghaee‐Bakhtiari, S. H., Avan, A., & Khazaei, M. (2018). Phytosomal curcumin elicits anti‐tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Current Pharmaceutical Design, 24(39), 4626–4638. https://doi.org/10.2174/1381612825666190110145151
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703
Ojo, O. A., Adeyemo, T. R., Rotimi, D., Batiha, G. E., Mostafa‐Hedeab, G., Iyobhebhe, M. E., Elebiyo, T. C., Atunwa, B., Ojo, A. B., Lima, C. M. G., & Conte‐Junior, C. A. (2022). Anticancer properties of curcumin against colorectal cancer: A review. Frontiers in Oncology, 12, 881641. https://doi.org/10.3389/fonc.2022.881641
Ou, Y., Wang, S. J., Li, D., Chu, B., & Gu, W. (2016). Activation of SAT1 engages polyamine metabolism with p53‐mediated ferroptotic responses. Proceedings of the National Academy of Sciences of the United States of America, 113(44), E6806–E6812. https://doi.org/10.1073/pnas.1607152113
Owen, J. B., & Butterfield, D. A. (2010). Measurement of oxidized/reduced glutathione ratio. Methods in Molecular Biology, 648, 269–277. https://doi.org/10.1007/978-1-60761-756-3_18
Pashirzad, M., Johnston, T. P., & Sahebkar, A. (2021). Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating Wnt beta‐catenin signaling pathway. Journal of Oncology, 2021, 3619510. https://doi.org/10.1155/2021/3619510
Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(3), 233–254. https://doi.org/10.3322/caac.21772
Silvestre, F., Santos, C., Silva, V., Ombredane, A., Pinheiro, W., Andrade, L., Garcia, M., Pacheco, T., Joanitti, G., Luz, G., & Carneiro, M. (2023). Pharmacokinetics of curcumin delivered by nanoparticles and the relationship with antitumor efficacy: A systematic review. Pharmaceuticals (Basel), 16(7), 943. https://doi.org/10.3390/ph16070943
Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., Fulda, S., Gascón, S., Hatzios, S. K., Kagan, V. E., Noel, K., Jiang, X., Linkermann, A., Murphy, M. E., Overholtzer, M., Oyagi, A., Pagnussat, G. C., Park, J., Ran, Q., … Zhang, D. D. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2), 273–285. https://doi.org/10.1016/j.cell.2017.09.021
Sun, Q., Tao, Q., Ming, T., Tang, S., Zhao, H., Liu, M., Yang, H., Ren, S., Lei, J., Liang, Y., Peng, Y., Wang, M., & Xu, H. (2023). Berberine is a suppressor of hedgehog signaling cascade in colorectal cancer. Phytomedicine, 114, 154792. https://doi.org/10.1016/j.phymed.2023.154792
Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: Molecular mechanisms and health implications. Cell Research, 31(2), 107–125. https://doi.org/10.1038/s41422-020-00441-1
Tang, X., Ding, H., Liang, M., Chen, X., Yan, Y., Wan, N., Chen, Q., Zhang, J., & Cao, J. (2021). Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904
Wang, Y., Zhang, Z., Sun, W., Zhang, J., Xu, Q., Zhou, X., & Mao, L. (2022). Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomedicine & Pharmacotherapy, 153, 113524. https://doi.org/10.1016/j.biopha.2022.113524
Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174. https://doi.org/10.1016/j.tranon.2021.101174
Yan, H., Talty, R., Aladelokun, O., Bosenberg, M., & Johnson, C. H. (2023). Ferroptosis in colorectal cancer: A future target? British Journal of Cancer, 128(8), 1439–1451. https://doi.org/10.1038/s41416-023-02149-6
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Yang, Z. J., Huang, S. Y., Zhou, D. D., Xiong, R. G., Zhao, C. N., Fang, A. P., Zhang, Y. J., Li, H. B., & Zhu, H. L. (2022). Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants (Basel), 11(8), 1481. https://doi.org/10.3390/antiox11081481
Yin, J., Wang, L., Wang, Y., Shen, H., Wang, X., & Wu, L. (2019). Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF‐beta/Smad2/3 signaling pathway. Oncotargets and Therapy, 12, 3893–3903. https://doi.org/10.2147/OTT.S199601
Zhang, Y., Rauf Khan, A., Fu, M., Zhai, Y., Ji, J., Bobrovskaya, L., & Zhai, G. (2019). Advances in curcumin‐loaded nanopreparations: Improving bioavailability and overcoming inherent drawbacks. Journal of Drug Targeting, 27(9), 917–931. https://doi.org/10.1080/1061186X.2019.1572158
Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., Tao, Q., & Xu, H. (2022). Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144. https://doi.org/10.1186/s12943-022-01616-7
Zhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., Tao, Q., Ming, T., & Xu, H. (2022). Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomedicine & Pharmacotherapy, 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559
Zhao, H., Tang, S., Tao, Q., Ming, T., Lei, J., Liang, Y., Peng, Y., Wang, M., Liu, M., Yang, H., Ren, S., & Xu, H. (2023). Ursolic acid suppresses colorectal cancer by down‐regulation of Wnt/beta‐catenin signaling pathway activity. Journal of Agricultural and Food Chemistry, 71(9), 3981–3993. https://doi.org/10.1021/acs.jafc.2c06775
Zhao, Y., Li, Y., Zhang, R., Wang, F., Wang, T., & Jiao, Y. (2020). The role of erastin in ferroptosis and its prospects in cancer therapy. Oncotargets and Therapy, 13, 5429–5441. https://doi.org/10.2147/ott.S254995