Flow sensing on dragonfly wings.
biomechanics
computational fluid dynamics
embodied intelligence
flow sensing
insect flight
morphological computation
wing sensory system
Journal
Annals of the New York Academy of Sciences
ISSN: 1749-6632
Titre abrégé: Ann N Y Acad Sci
Pays: United States
ID NLM: 7506858
Informations de publication
Date de publication:
05 Jun 2024
05 Jun 2024
Historique:
medline:
5
6
2024
pubmed:
5
6
2024
entrez:
5
6
2024
Statut:
aheadofprint
Résumé
One feature of animal wings is their embedded mechanosensory system that can support flight control. Insect wings are particularly interesting as they are highly deformable yet the actuation is limited to the wing base. It is established that strain sensors on insect wings can directly mediate reflexive control; however, little is known about airflow sensing by insect wings. What information can flow sensors capture and how can flow sensing benefit flight control? Here, we use the dragonfly (Sympetrum striolatum) as a model to explore the function of wing sensory bristles in the context of flight control. Combining our detailed anatomical reconstructions of both the sensor microstructures and wing architecture, we used computational fluid dynamics simulations to ask the following questions. (1) Are there strategic locations on wings that sample flow for estimating aerodynamically relevant parameters such as the local effective angle of attack? (2) Is the sensory bristle distribution on dragonfly wings optimal for flow sensing? (3) What is the aerodynamic effect of microstructures found near the sensory bristles on dragonfly wings? We discuss the benefits of flow sensing for flexible wings and how the evolved sensor placement affects information encoding.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R002509/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R002657/1
Pays : United Kingdom
Organisme : Stiftung Begabtenförderung Cusanuswerk
Informations de copyright
© 2024 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of The New York Academy of Sciences.
Références
Xing, Y., & Yang, J. (2020). Stiffness distribution in natural insect cuticle reveals an impact resistance strategy. Journal of Biomechanics, 109, 109952. https://doi.org/10.1016/j.jbiomech.2020.109952
Clark, C. J. (2021). Ways that animal wings produce sound. Integrative and Comparative Biology, 61(2), 696–709. https://doi.org/10.1093/icb/icab008
Théry, M., & Gomez, D. (2010). Insect colours and visual appearance in the eyes of their predators. Advances in Insect Physiology, 38(C), 267–353. https://doi.org/10.1016/S0065‐2806(10)38001‐5
Guillermo‐Ferreira, R., Bispo, P. C., Appel, E., Kovalev, A., & Gorb, S. N. (2015). Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication. Journal of Insect Physiology, 81, 129–136. https://doi.org/10.1016/j.jinsphys.2015.07.010
Tsai, C. C., Childers, R. A., Nan Shi, N., Ren, C., Pelaez, J. N., Bernard, G. D., Pierce, N. E., & Yu, N. (2020). Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nature Communications, 11(1), 551. https://doi.org/10.1038/s41467‐020‐14408‐8
Rummel, A. D., Sierra, M. M., Quinn, B. L., & Swartz, S. M. (2023). Hair, there and everywhere: A comparison of bat wing sensory hair distribution. Anatomical Record, 306(11), 2681–2692. https://doi.org/10.1002/ar.25176
Brown, R. E., & Fedde, M. R (1993). Airflow sensors in the avian wing. Journal of Experimental Biology, 179(1), 13–30. https://doi.org/10.1242/jeb.179.1.13
Fabian, J., Siwanowicz, I., Uhrhan, M., Maeda, M., Bomphrey, R. J., & Lin, H.‐T. (2022). Systematic characterization of wing mechanosensors that monitor airflow and wing deformations. Iscience, 25(4), 104150. https://doi.org/10.1016/j.isci.2022.104150
Hatch, G. (1966). Structure and mechanics of the dragonfly pterothorax. Annals of the Entomological Society of America, 59(4), 702–714. https://doi.org/10.1093/aesa/59.4.702
Azuma, B. Y. A., & Watanabe, T. (1988). Flight performance of a dragonfly. Journal of Experimental Biology, 137(1), 221–252.
Rüppell, G. (1989). Kinematic analysis of symmetrical flight manoeuvres of odonata. Journal of Experimental Biology, 144(1), 13–42.
Wakeling, J. M., & Ellington, C. P. (1997). Dragonfly flight: I gliding flight and steady‐state aerodynamic forces. Journal of Experimental Biology, 200(3), 543–556. https://doi.org/10.1242/jeb.200.3.543
Wakeling, J. M., & Ellington, C. P. (1997). Dragonfly flight II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200, 557–582.
May, M. L. (1982). Heat exchange and endothermy in protodonata. Evolution; International Journal of Organic Evolution, 36(5), 1051. https://doi.org/10.2307/2408082
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: Free‐flight and tethered flow visualizations reveal a diverse array of unsteady lift‐generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207(24), 4299–4323. https://doi.org/10.1242/jeb.01262
Bomphrey, R. J., Nakata, T., Henningsson, P., & Lin, H.‐T. (2016). Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704), 20150389. https://doi.org/10.1098/rstb.2015.0389
Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading‐edge vortices in insect flight. Nature, 384(6610), 626–630. https://doi.org/10.1038/384626a0
Kesel, A. B. (2000). Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils. Journal of Experimental Biology, 203(20), 3125–3135.
Kim, W. K., Ko, J. H., Park, H. C., & Byun, D. (2009). Effects of corrugation of the dragonfly wing on gliding performance. Journal of Theoretical Biology, 260(4), 523–530. https://doi.org/10.1016/j.jtbi.2009.07.015
Flint, T. J., Jermy, M. C., New, T. H., & Ho, W. H. (2017). Computational study of a pitching bio‐inspired corrugated airfoil. International Journal of Heat and Fluid Flow, 65, 328–341. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.009
Krishna, S., Cho, M., Wehmann, H. N., Engels, T., & Lehmann, F. O. (2020). Wing design in flies: Properties and aerodynamic function. Insects, 11(8), 466. https://doi.org/10.3390/insects11080466
Vargas, A., Mittal, R., & Dong, H. (2008). A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration & Biomimetics, 3(2), 26004. https://doi.org/10.1088/1748‐3182/3/2/026004
Rees, C. J. C. (1975). Form and function in corrugated insect wings. Nature, 256(5514), 200–203. https://doi.org/10.1038/256200a0
Rudolph, R. (1978). Aerodynamic properties of Libellula quadrimaculata L. (Anisoptera: Libellulidae), and the flow around smooth and corrugated wing section models during gliding flight. Odonatologica, 7(I), 49–58.
Obata, A., & Sinohara, S. (2009). Flow visualization study of the aerodynamics of modeled dragonfly wings. AIAA Journal, 47(12), 3043–3046. https://doi.org/10.2514/1.43836
Fujita, Y., & Iima, M. (2023). Dynamic lift enhancement mechanism of dragonfly wing model by vortex−corrugation interaction. Physical Review Fluids, 8(12), 123101. https://doi.org/10.1103/PhysRevFluids.8.123101
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549–1552. https://doi.org/10.1126/science.1175928
Zhang, Z., Yin, Y., Zhong, Z., & Zhao, H. (2015). Aerodynamic performance of dragonfly wing with well‐designed corrugated section in gliding flight. Computer Modeling in Engineering and Sciences, 109(3), 285–302.
Combes, S. A., & Daniel, T. L. (2003). Into thin air: Contributions of aerodynamic and inertial‐elastic forces to wing bending in the hawkmoth Manduca sexta. Journal of Experimental Biology, 206(17), 2999–3006. https://doi.org/10.1242/jeb.00502
Rajabi, H., & Gorb, S. N. (2020). How do dragonfly wings work? A brief guide to functional roles of wing structural components. International Journal of Odonatology, 23(1), 23–30. https://doi.org/10.1080/13887890.2019.1677515
Kesel, A. B., Philippi, U., & Nachtigall, W. (1998). Biomechanical aspects of the insect wing: An analysis using the finite element method. Computers in Biology and Medicine, 28(4), 423–437. https://doi.org/10.1016/S0010‐4825(98)00018‐3
Aiello, B. R., Stanchak, K. E., Weber, A. I., Deora, T., Sponberg, S., & Brunton, B. W. (2021). Spatial distribution of campaniform sensilla mechanosensors on wings: Form, function, and phylogeny. Current Opinion in Insect Science, 48, 8–17. https://doi.org/10.1016/j.cois.2021.06.002
Arnold, J. W. (1964). Blood circulation in insect wings. Canadian Entomologist, 96(1–2), 98.
Guillermo‐Ferreira, R., Appel, E., Urban, P., Bispo, P. C., & Gorb, S. N. (2017). The unusual tracheal system within the wing membrane of a dragonfly. Biology Letters, 13(5), 20160960. https://doi.org/10.1098/rsbl.2016.0960
Dickerson, B. H., Aldworth, Z. N., & Daniel, T. L. (2014). Control of moth flight posture is mediated by wing mechanosensory feedback. Journal of Experimental Biology, 217(13), 2301–2308. https://doi.org/10.1242/jeb.103770
Pratt, B., Deora, T., Mohren, T., & Daniel, T. (2017). Neural evidence supports a dual sensory‐motor role for insect wings. Proceedings of the Royal Society B: Biological Sciences, 284(1862), 20170969. https://doi.org/10.1098/rspb.2017.0969
Dickinson, M. H. (1990). Linear and nonlinear encoding properties of an identified mechanoreceptor on the fly wing measured with mechanical noise stimuli. Journal of Experimental Biology, 151, 219–244.
Houot, B., Gigot, V., Robichon, A., & Ferveur, J. F. (2017). Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation. Scientific Reports, 7(1), 40221. https://doi.org/10.1038/srep40221
Li, J., Zhang, W., Guo, Z., Wu, S., Jan, L. Y., & Jan, Y. N. (2016). A defensive kicking behavior in response to mechanical stimuli mediated by Drosophila wing margin bristles. Journal of Neuroscience, 36(44), 11275–11282. https://doi.org/10.1523/JNEUROSCI.1416‐16.2016
Yarger, A. M., & Fox, J. L. (2016). Dipteran halteres: Perspectives on function and integration for a unique sensory organ. Integrative and Comparative Biology, 56(5), 865–876. https://doi.org/10.1093/icb/icw086
Fox, J. L., Fairhall, A. L., & Daniel, T. L. (2010). Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3840–3845. https://doi.org/10.1073/PNAS.0912548107
Dickinson, M. H. (1999). Haltere–mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1385), 903–916. https://doi.org/10.1098/rstb.1999.0442
Pringle, J. (1948). The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 233(602), 347–384. https://doi.org/10.1098/rstb.1948.0007
Camhi, J. M. (1969). Locust wind receptors. I. Transducer mechanics and sensory response. Journal of Experimental Biology, 50(2), 335–348.
Taylor, G., Bomphrey, R., & ’t Hoen, J. (2006). Insect flight dynamics and control. 44th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2006‐32
Gewecke, M. (1970). Antennae: Another wind‐sensitive receptor in locusts. Nature, 225(5239), 1263–1264. https://doi.org/10.1038/2251263a0
Altman, J. S., Anselment, E., & Kutsch, W. (1978). Postembryonic development of an insect sensory system: Ingrowth of axons from hindwing sense organs in Locusta migratoria. Proceedings of the Royal Society of London—Biological Sciences, 202(1149), 497–516. https://doi.org/10.1098/rspb.1978.0082
Ai, H., Yoshida, A., & Yokohari, F. (2010). Vibration receptive sensilla on the wing margins of the silkworm moth Bombyx mori. Journal of Insect Physiology, 56(3), 236–246. https://doi.org/10.1016/j.jinsphys.2009.10.007
Yoshida, A., Noda, A., & Emoto, J. (2001). Bristle distribution along the wing margin of the small white cabbage butterfly (Lepidoptera: Pieridae). Annals of the Entomological Society of America, 94(3), 467–470. https://doi.org/10.1603/0013‐8746(2001)094[0467:BDATWM]2.0.CO;2
Pearson, K. G., & Rowell, C. H. F. (1977). Functions of tonic sensory input in insects. Annals of the New York Academy of Sciences, 290(1), 114–123. https://doi.org/10.1111/j.1749‐6632.1977.tb39721.x
Frye, M. A. (2001). Encoding properties of the wing hinge stretch receptor in the hawkmoth Manduca sexta. Journal of Experimental Biology, 204(21), 3693–3702. https://doi.org/10.1242/jeb.204.21.3693
Aljadeff, J., Lansdell, B. J., Fairhall, A. L., & Kleinfeld, D. (2016). Analysis of neuronal spike trains, deconstructed. Neuron, 91(2), 221–259. https://doi.org/10.1016/j.neuron.2016.05.039
Ache, J. M., & Dürr, V. (2015). A computational model of a descending mechanosensory pathway involved in active tactile sensing. PLOS Computational Biology, 11(7), e1004263. https://doi.org/10.1371/journal.pcbi.1004263
Mohren, T. L., Daniel, T. L., Brunton, S. L., & Brunton, B. W. (2018). Neural‐inspired sensors enable sparse, efficient classification of spatiotemporal data. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10564–10569. https://doi.org/10.1073/pnas.1808909115
Newman, B. G., Savage, S. G., & Schouella, D. (1977). Model tests on a wing section of an Aeschna dragonfly. In T. J. Pedley (Ed.), Scale Effects in Animal Locomotion.
Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object‐oriented techniques. Computers in Physics, 12(6), 620–631. https://doi.org/10.1063/1.168744
Community, B. O. (2018). Blender—A 3D modelling and rendering package (3.v.1). Stitching Blender Foundation. http://www.blender.org
Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An end‐user tool for large data visualization. Elsevier.
Team, R. (2020). RStudio: Integrated Development for R (5.10). RStudio, PBC. http://www.rstudio.com/
Dieck, R. H. (2007). Uncertainty (error) propagation. In Measurement uncertainty: Methods and applications (4th rev. ed., pp. 111–146). ISA.
Tuthill, J. C., & Wilson, R. I. (2016). Mechanosensation and adaptive motor control in insects. Current Biology, 26(20), R1022–R1038. https://doi.org/10.1016/j.cub.2016.06.070
Wang, L., Liang, P.‐J., Zhang, P.‐M., & Qiu, Y.‐H. (2014). Ionic mechanisms underlying tonic and phasic firing behaviors in retinal ganglion cells. Channels, 8(4), 298–307. https://doi.org/10.4161/chan.28012
Project, I. (2020). Inkscape (1.01). https://inkscape.org
Gracey, W. (1958). Summary of methods of measuring angle of attack on aircraft. Technical Note 4351. National Advisory Committee for Aeronautics.
Sankaralingam, L., & Ramprasadh, C. (2020). A comprehensive survey on the methods of angle of attack measurement and estimation in UAVs. Chinese Journal of Aeronautics, 33(3), 749–770. https://doi.org/10.1016/j.cja.2019.11.003
Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect right. Science, 284(5422), 1954–1960. https://doi.org/10.1126/SCIENCE.284.5422.1954
Anwer, S. F., Ashraf, I., Mehdi, H., Ahmad, A., & Grafi, H. (2013). On the aerodynamic performance of dragonfly wing section in gliding mode. Advances in Aerospace Science and Applications, 3(3), 227–234.
Thurm, U. (1963). Die Beziehungen zwischen mechanischen Reizgrössen und stationären Erregungszuständen bei Borstenfeld‐Sensillen von Bienen. Zeitschrift Für Vergleichende Physiologie, 46(4), 351–382. https://doi.org/10.1007/BF00340465
Nicklaus, R. (1965). Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhängigkeit von der Grösse und Richtung der Auslenkung. Zeitschrift Für Vergleichende Physiologie, 50(4), 331–362. https://doi.org/10.1007/BF00339423
Bowers, A. H., Murillo, O. J., Jensen, R. R., Eslinger, B., & Gelzer, C. (2016). On wings of the minimum induced drag: Spanload implications for aircraft and birds.
Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979–2987. https://doi.org/10.1242/jeb.00523
Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 206(17), 2989–2997. https://doi.org/10.1242/jeb.00524
Chen, L., Wu, J., & Cheng, B. (2020). Leading‐edge vortex formation and transient lift generation on a revolving wing at low Reynolds number. Aerospace Science and Technology, 97, 105589. https://doi.org/10.1016/j.ast.2019.105589
Dickerson, B. H., Fox, J. L., & Sponberg, S. (2021). Functional diversity from generic encoding in insect campaniform sensilla. Current Opinion in Physiology, 19, 194–203. https://doi.org/10.1016/j.cophys.2020.11.004
Hou, D., & Zhong, Z. (2022). Comparative analysis of deformation behaviors of dragonfly wing under aerodynamic and inertial forces. Computers in Biology and Medicine, 145, 105421. https://doi.org/10.1016/J.COMPBIOMED.2022.105421
Zheng, L., Wang, X., Khan, A., Vallance, R. R., Mittal, R., & Hedrick, T. L. (2009). A combined experimental‐numerical study of the role of wing flexibility in insect flight. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2009‐382
Bai, S., & Luo, S. (1991). Theoretical and computational dynamics of a compressible flow. NASA STI/Recon Technical Report A, 92, 26775.
Jennings, S. G. (1988). The mean free path in air. Journal of Aerosol Science, 19(2), 159–166. https://doi.org/10.1016/0021‐8502(88)90219‐4
Gherlone, M., Cerracchio, P., & Mattone, M. (2018). Shape sensing methods: Review and experimental comparison on a wing‐shaped plate. Progress in Aerospace Sciences, 99, 14–26. https://doi.org/10.1016/j.paerosci.2018.04.001