Low rate hippocampal delay period activity encodes behavioral experience.

CA1 CA3 adversarial attacks decoding hippocampus working memory

Journal

Hippocampus
ISSN: 1098-1063
Titre abrégé: Hippocampus
Pays: United States
ID NLM: 9108167

Informations de publication

Date de publication:
05 Jun 2024
Historique:
revised: 08 04 2024
received: 16 10 2023
accepted: 09 05 2024
medline: 5 6 2024
pubmed: 5 6 2024
entrez: 5 6 2024
Statut: aheadofprint

Résumé

Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.

Identifiants

pubmed: 38838068
doi: 10.1002/hipo.23619
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : German Research Association
ID : LE2250/12-1
Organisme : German Research Association
ID : LE2250/20-1
Organisme : NIH HHS
ID : R01 NS086947
Pays : United States
Organisme : NIH HHS
ID : R01MH119179
Pays : United States
Organisme : German Research Association
ID : INST 39/963-1 FUGG

Informations de copyright

© 2024 The Author(s). Hippocampus published by Wiley Periodicals LLC.

Références

Abeles, M. (1991). Corticonics: Neuronal circuits of the cerebral cortex (1st ed.). Cambridge University Press.
Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Springer‐Verlag.
Böhm, C., & Lee, A. K. (2020). Canonical goal‐selective representations are absent from prefrontal cortex in a spatial working memory task requiring behavioral flexibility. eLife, 9, e63035.
Brody, C. D., ndez, A., Zainos, A., Lemus, L., & Romo, R. (2002). Analysing neuronal correlates of the comparison of two sequentially presented sensory stimuli. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1843–1850.
Chenani, A., Sabariego, M., Schlesiger, M. I., Leutgeb, J. K., Leutgeb, S., & Leibold, C. (2019). Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex. Nature Communications, 10, 1341.
Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable AI really mean? A new conceptualization of perspectives. arXiv arXiv:1710.00794v1.
Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density‐based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the second international conference on knowledge discovery and data mining, KDD'96 (pp. 226–231). AAAI Press.
Fetterhoff, D., Sobolev, A., & Leibold, C. (2021). Graded remapping of hippocampal ensembles under sensory conflicts. Cell Reports, 36, 109661.
Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49, 735–746.
Gil, M., Ancau, M., Schlesiger, M. I., Neitz, A., Allen, K., De Marco, R. J., & Monyer, H. (2018). Impaired path integration in mice with disrupted grid cell firing. Nature Neuroscience, 21, 81–91.
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv e‐Prints arXiv:1412.6572.
Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.
Hales, J. B., Schlesiger, M. I., Leutgeb, J. K., Squire, L. R., Leutgeb, S., & Clark, R. E. (2014). Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus‐dependent place memory. Cell Reports, 9, 893–901.
Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews. Neuroscience, 7, 523–534.
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp‐wave ripples support spatial memory. Science, 336, 1454–1458.
Karimi, H., Derr, T., & Tang, J. (2019). Characterizing the decision boundary of deep neural networks. arXiv arXiv:1912.11460.
Leibold, C., Gundlfinger, A., Schmidt, R., Thurley, K., Schmitz, D., & Kempter, R. (2008). Temporal compression mediated by short‐term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 105, 4417–4422.
Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K. R. (2011). Introduction to machine learning for brain imaging. NeuroImage, 56, 387–399.
MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737–749.
Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition: A neural model of two‐interval discrimination. Science, 307, 1121–1124.
Major, G., & Tank, D. (2004). Persistent neural activity: Prevalence and mechanisms. Current Opinion in Neurobiology, 14, 675–684.
Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319, 1543–1546.
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind‐reading: Multi‐voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430.
Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 1322–1327.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An imperative style, high‐performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche‐Buc, E. Fox and R. Garnet (Eds.), Advances in Neural Information Processing Systems. Curran Associates, Inc. https://doi.org/10.48550/arXiv.1912.01703
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit‐learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
Rauber, J., Zimmermann, R., Bethge, M., & Brendel, W. (2020). Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and JAX. Journal of Open Source Software, 5, 2607.
Sabariego, M., Schönwald, A., Boublil, B. L., Zimmerman, D. T., Ahmadi, S., Gonzalez, N., Leibold, C., Clark, R. E., Leutgeb, J. K., & Leutgeb, S. (2019). Time cells in the hippocampus are neither dependent on medial entorhinal cortex inputs nor necessary for spatial working memory. Neuron, 102, 1235–1248.
Schlesiger, M. I., Cannova, C. C., Boublil, B. L., Hales, J. B., Mankin, E. A., Brandon, M. P., Leutgeb, J. K., Leibold, C., & Leutgeb, S. (2015). The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nature Neuroscience, 18, 1123–1132.
Schneider S, Lee JH, Mathis MW (2023). Learnable latent embeddings for joint behavioral and neural analysis. Nature, 617, 360–368.
Shin, J. D., Tang, W., & Jadhav, S. P. (2019). Dynamics of awake hippocampal‐prefrontal replay for spatial learning and memory‐guided decision making. Neuron, 104, 1110–1125.
Skaggs, W. E., McNaughton, B. L., Gothard, K. M., & Markus, E. J. (1993). An information‐theoretic approach to deciphering the hippocampal code. In S. Hanson, J. Cowan, & C. Giles (Eds.), Advances in neural information processing systems 5, NIPS (pp. 1030–1037). Morgan‐Kaufman.
Thurley, K., Henke, J., Hermann, J., Ludwig, B., Tatarau, C., Wätzig, A., Herz, A. V., Grothe, B., & Leibold, C. (2014). Mongolian gerbils learn to navigate in complex virtual spaces. Behavioural Brain Research, 266, 161–168.
Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.
Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27, 623–633.

Auteurs

Markos Athanasiadis (M)

Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

Stefano Masserini (S)

Computational Neurophysics Lab, Institute for Theoretical Physics, Universität Bremen, Bremen, Germany.
Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany.

Li Yuan (L)

Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA.

Dustin Fetterhoff (D)

Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany.
Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain.

Jill K Leutgeb (JK)

Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA.

Stefan Leutgeb (S)

Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA.
Kavli Institute for Brain and Mind, University of California, La Jolla, California, USA.

Christian Leibold (C)

Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
BrainLinks-BrainTools, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

Classifications MeSH