A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Jun 2024
05 Jun 2024
Historique:
received:
20
10
2023
accepted:
17
05
2024
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
5
6
2024
Statut:
epublish
Résumé
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Identifiants
pubmed: 38839766
doi: 10.1038/s41467-024-49025-2
pii: 10.1038/s41467-024-49025-2
doi:
Substances chimiques
Transcription Factors
0
DMRT1 protein
0
RNA, Untranslated
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4781Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : STO493/8
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 825753 (ERGO)
Informations de copyright
© 2024. The Author(s).
Références
Herpin, A. & Schartl, M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260–1274 (2015).
pubmed: 26358957
pmcid: 4766460
doi: 10.15252/embr.201540667
Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet 18, 675–689 (2017).
pubmed: 28804140
doi: 10.1038/nrg.2017.60
Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).
pubmed: 24983465
pmcid: 4077654
doi: 10.1371/journal.pbio.1001899
Rovatsos, M. et al. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 25, 3120–3126 (2016).
pubmed: 27037610
doi: 10.1111/mec.13635
Beukeboom, L. W. & Perrin, N. The evolution of sex determination (Oxford University Press, 2014).
Volff, J. N., Nanda, I., Schmid, M. & Schartl, M. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex. Dev. 1, 85–99 (2007).
pubmed: 18391519
doi: 10.1159/000100030
Perrin, N. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043–3049 (2009).
pubmed: 19744117
doi: 10.1111/j.1558-5646.2009.00837.x
Bertho, S., Herpin, A., Schartl, M. & Guiguen, Y. Lessons from an unusual vertebrate sex-determining gene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200092 (2021).
pubmed: 34247499
pmcid: 8273500
doi: 10.1098/rstb.2020.0092
Kuhl, H. et al. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200089 (2021).
pubmed: 34247507
pmcid: 8273502
doi: 10.1098/rstb.2020.0089
Kostmann, A., Kratochvíl, L. & Rovatsos, M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. Biol. Sci. 288, 20202139 (2021).
pubmed: 33468012
pmcid: 7893288
Pan, Q. et al. The rise and fall of the ancient northern pike master sex-determining gene. Elife 10, https://doi.org/10.7554/eLife.62858 (2021).
Ito, M. Sex determination and differentiation in frogs. in Reproductive and Developmental Strategies: The Continuity of Life (eds. Kobayashi, K., Kitano, T., Iwao, Y. & Kondo, M.) 349–366 (Springer Japan, Tokyo, 2018).
Schmid, M. & Steinlein, C. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. in Genes and Mechanisms in Vertebrate Sex Determination (eds. Scherer, G. & Schmid, M.) 143–176 (Birkhäuser Basel, Basel, 2001).
Schartl, M., Schmid, M. & Nanda, I. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125, 553–571 (2016).
pubmed: 26715206
doi: 10.1007/s00412-015-0569-y
Green, D. M. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97, 55–70 (1988).
doi: 10.1007/BF00331795
Roco, Á. et al. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl. Acad. Sci. USA 112, E4752–E4761 (2015).
pubmed: 26216983
pmcid: 4553762
doi: 10.1073/pnas.1505291112
Furman, B. L. S. et al. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 16, e1009121 (2020).
pubmed: 33166278
pmcid: 7652241
doi: 10.1371/journal.pgen.1009121
AmphibiaWeb. See www.amphibiaweb.org (accessed May 2024).
Yoshimoto, S. et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 105, 2469–2474 (2008).
pubmed: 18268317
pmcid: 2268160
doi: 10.1073/pnas.0712244105
Cauret, C. M. S. et al. Developmental systems drift and the drivers of sex chromosome evolution. Mol. Biol. Evol. 37, 799–810 (2020).
pubmed: 31710681
doi: 10.1093/molbev/msz268
Cauret, C. M. S. et al. Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis. Plos Genet. 19, e1010990 (2023).
pubmed: 37792893
pmcid: 10578606
doi: 10.1371/journal.pgen.1010990
Evans, B. J. et al. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J. Evol. Biol. 35, 1777–1790 (2022).
pubmed: 36054077
pmcid: 9722552
doi: 10.1111/jeb.14078
Bogart, J. P. Karyotypes. in Evolution of the genus Bufo (ed. Blair, W. F.) 171–232 (University of Texas Press, 1972).
Schmid, M. Chromosome banding in Amphibia I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66, 361–388 (1978).
doi: 10.1007/BF00328536
Piprek, R. P., Kloc, M. & Kubiak, J. Z. Bidder’s organ–structure, development and function. Int. J. Dev. Biol. 58, 819–827 (2014).
pubmed: 26154323
doi: 10.1387/ijdb.140147rp
Harms, W. Untersuchungen über das Biddersche Organ der männlichen und weiblichen Kröten. Z. Anat. Entwickl. Gesch. 69, 598–629 (1923).
doi: 10.1007/BF02593633
Ponse, K. La proportion sexuelle dans la descendance issue des oeufs produits par l’organe de Bidder des crapauds femelles. Rev. Suisse Zool. 48, 541–544 (1941).
Changxiang, W., Qun, L. & Wei, X. Studies of chromosome banding and sister chromatid exchange in Bufo bufo gargarizans. Acta Gen. Sin. 10, 291–297 (1983).
Abramyan, J., Ezaz, T., Graves, J. A. & Koopman, P. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res. 17, 1015–1024 (2009).
pubmed: 19936947
doi: 10.1007/s10577-009-9095-1
Malone, J. H. & Fontenot, B. E. Patterns of reproductive isolation in toads. PLoS One 3, e3900 (2008).
pubmed: 19065271
pmcid: 2588652
doi: 10.1371/journal.pone.0003900
Stöck, M., Steinlein, C., Lamatsch, D. K., Schartl, M. & Schmid, M. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124, 255–272 (2005).
pubmed: 16134338
doi: 10.1007/s10709-005-3085-9
Ueda, H. Offspring of sex-reversed males in Bufo viridis. Sci. Rep. Lab. Amphib. Biol. Hiroshima. Univ. 10, 155–164 (1990).
Stöck, M. et al. Low rates of X-Y recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (Bufo viridis subgroup). J. Evol. Biol. 26, 674–682 (2013).
pubmed: 23316809
doi: 10.1111/jeb.12086
Brelsford, A. et al. Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67, 2434–2440 (2013).
pubmed: 23888863
doi: 10.1111/evo.12151
Tamschick, S. et al. Sex chromosome conservation, DMRT1 phylogeny and gonad morphology in diploid Palearctic green toads (Bufo viridis subgroup). Cytogenet Genome Res. 144, 315–324 (2014).
pubmed: 25823515
doi: 10.1159/000380841
Betto-Colliard, C., Hofmann, S., Sermier, R., Perrin, N. & Stöck, M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc. Biol. Sci. 285, 20172667 (2018).
pubmed: 29436499
pmcid: 5829204
Burgin, C. et al. Mammal Diversity Database (Version 1.12.1) dataset. Zenodo https://doi.org/10.5281/zenodo.7830771 (2023) (accessed May 2024: https://www.mammaldiversity.org ).
NCBI. See www.ncbi.nlm.nih.gov (accessed May 2024).
Guzmán, K. et al. Identification and characterization of a new family of long satellite DNA, specific of true toads (Anura, Amphibia, Bufonidae). Sci. Rep. 12, 13960 (2022).
pubmed: 35978080
pmcid: 9385698
doi: 10.1038/s41598-022-18051-9
Stöck, M. et al. Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Mol. Phylogenet Evol. 41, 663–689 (2006).
pubmed: 16919484
doi: 10.1016/j.ympev.2006.05.026
Dufresnes, C. et al. Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic. BMC Evol. Biol. 18, 67 (2018).
pubmed: 29720079
pmcid: 5930823
doi: 10.1186/s12862-018-1179-0
Schartl, M. & Herpin, A. Sex determination in vertebrates. in Encyclopedia of Reproduction (2nd Edition) (ed. Skinner, M. K.) 159–167 (Academic Press, 2018).
Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190, https://www.jstor.org/stable/3890061 (1960).
Burren, O. S. et al. Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biol. 18, 165 (2017).
pubmed: 28870212
pmcid: 5584004
doi: 10.1186/s13059-017-1285-0
Jackson, D. A., Dickinson, P. & Cook, P. R. The size of chromatin loops in HeLa cells. EMBO J. 9, 567–571 (1990).
pubmed: 2303042
pmcid: 551702
doi: 10.1002/j.1460-2075.1990.tb08144.x
Lyu, J., Shao, R., Kwong Yung, P. Y. & Elsässer, S. J. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 50, e13 (2022).
pubmed: 34792172
doi: 10.1093/nar/gkab1073
Bayley, R. et al. H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Mol. Cell 82, 1924–1939.e10 (2022).
pubmed: 35439434
pmcid: 9616806
doi: 10.1016/j.molcel.2022.03.030
Giovanni, C. et al. The BOD1L subunit of the mammalian SETD1A complex sustains the expression of DNA damage repair genes despite restraining H3K4 trimethylation. Preprint at https://www.biorxiv.org/content/10.1101/2023.04.06.535882v2 (2023).
Hayashi, S. et al. Neofunctionalization of a Noncoding Portion of a DNA Transposon in the Coding Region of the Chimerical Sex-Determining Gene dm-W in Xenopus Frogs. Mol. Biol. Evol. 39, msac138 (2022).
pubmed: 35763822
pmcid: 9250109
doi: 10.1093/molbev/msac138
Burgos, M. et al. Non-coding RNAs: lncRNAs, miRNAs, and piRNAs in sexual development. Sex. Dev. 15, 335–350 (2021).
pubmed: 34614501
doi: 10.1159/000519237
Joshi, M. & Rajender, S. Long non-coding RNA (lncRNAs) in spermatogenesis, male infertility. Reprod. Biol. Endocrinol. 18, 103 (2020).
pubmed: 33126901
pmcid: 7599102
doi: 10.1186/s12958-020-00660-6
Feng, B. et al. lncRNA DMRT2-as acts as a transcriptional regulator of dmrt2 involving in sex differentiation in the Chinese tongue sol (Cynoglossus semilaevis). Comp. Biochem Physiol. B Biochem Mol. Biol. 253, 110542 (2021).
pubmed: 33301875
doi: 10.1016/j.cbpb.2020.110542
Bowles, J. & Koopman, P. Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401–3411 (2007).
pubmed: 17715177
doi: 10.1242/dev.001107
Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).
pubmed: 26166705
doi: 10.1016/j.molcel.2015.06.007
Higgs, M. R. et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71, 25–41 (2018).
pubmed: 29937342
pmcid: 6039718
doi: 10.1016/j.molcel.2018.05.018
Rodríguez-Marí, A. & Postlethwait, J. H. The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol. 105, 461–490 (2011).
pubmed: 21951543
doi: 10.1016/B978-0-12-381320-6.00020-5
Smallwood, S. A. & Kelsey, G. De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42 (2012).
pubmed: 22019337
doi: 10.1016/j.tig.2011.09.004
Youds, J. L. & Boulton, S. J. The choice in meiosis—defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 124, 501–513 (2011).
pubmed: 21282472
doi: 10.1242/jcs.074427
Ki, B. S. et al. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. Exp. Mol. Med. 54, 1098–1108 (2022).
pubmed: 35918532
pmcid: 9440128
doi: 10.1038/s12276-022-00813-0
Fan, H.-Y. & Sun, Q.-Y. Chapter 12 - Oocyte Meiotic Maturation. in The Ovary (3rd Edition) (eds. Leung, P. C. K. & Adashi, E. Y.) 181–203 (Academic Press, 2019).
Dupont, S. & Capel, B. The chromatin state during gonadal sex determination. Sex. Dev. 15, 308–316 (2021).
pubmed: 34753132
doi: 10.1159/000520007
Garcia-Moreno, S. A. et al. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet. 15, e1007895 (2019).
pubmed: 31116734
pmcid: 6548405
doi: 10.1371/journal.pgen.1007895
Nakamura, M. Sex determination in amphibians. Semin Cell Dev. Biol. 20, 271–282 (2009).
pubmed: 18996493
doi: 10.1016/j.semcdb.2008.10.003
Wolf, J. C. et al. Effects of 17β-estradiol exposure on Xenopus laevis gonadal histopathology. Environ. Toxicol. Chem. 29, 1091–1105 (2010).
pubmed: 20821545
doi: 10.1002/etc.133
Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754
doi: 10.1093/bioinformatics/bts174
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).
pubmed: 31819265
doi: 10.1038/s41592-019-0669-3
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
pubmed: 30936562
doi: 10.1038/s41587-019-0072-8
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249
pmcid: 5846465
doi: 10.1016/j.cels.2016.07.002
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562
pmcid: 5635820
doi: 10.1126/science.aal3327
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
pubmed: 27467250
pmcid: 5596920
doi: 10.1016/j.cels.2015.07.012
Kent, W. J. et al. The human genome browser at UCSC. Genome Res 12, 996–1006 (2002).
pubmed: 12045153
pmcid: 186604
doi: 10.1101/gr.229102
Gerchen, J. F. et al. A single transcriptome of a green toad (Bufo viridis) yields candidate genes for sex determination and -differentiation and non-anonymous population genetic markers. PLoS One 11, e0156419 (2016).
pubmed: 27232626
pmcid: 4883742
doi: 10.1371/journal.pone.0156419
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Nie, Fan et al. De novo diploid genome assembly using long noisy reads via haplotype-aware error correction and inconsistent overlap identification. Nat. Commun. 15, 2964 (2024).
pubmed: 38580638
pmcid: 10997618
doi: 10.1038/s41467-024-47349-7
Zhang, H. et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Comm. 12, 6566 (2021).
doi: 10.1038/s41467-021-26865-w
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
pubmed: 36525368
doi: 10.1093/bioinformatics/btac808
Kolmogorov, M. et al. Chromosome assembly of large and complex genomes using multiple references. Genome Res. 28, 1720–1732 (2018).
pubmed: 30341161
pmcid: 6211643
doi: 10.1101/gr.236273.118
Brelsford, A., Dufresnes, C. & Perrin, N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity 116, 177–181 (2016).
pubmed: 26374238
doi: 10.1038/hdy.2015.83
Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. Res 28, 4737–4754 (2019).
doi: 10.1111/mec.15253
Feron, R. et al. RADSex: a computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol. Ecol. Resour. 21, 1715–1731 (2021).
pubmed: 33590960
pmcid: 8589568
doi: 10.1111/1755-0998.13360
https://github.com/RomainFeron/paper-sexdetermination-greentoad-2021 .
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).
pubmed: 25017105
pmcid: 4753679
doi: 10.1038/ng.3036
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Sahlin, K., Lim, M. C. W. & Prost, S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 11, 1392–1398 (2021).
pubmed: 33598139
pmcid: 7863402
doi: 10.1002/ece3.7146
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
pubmed: 10742046
doi: 10.1093/oxfordjournals.molbev.a026334
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700
pmcid: 7182206
doi: 10.1093/molbev/msaa015
Kamran, H., Tahir, M., Tayara, H. & Chong, K. T. iEnhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. 12, 2120 (2022).
doi: 10.3390/app12042120
Tamschick, S. et al. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci. Rep. 6, 23825 (2016).
pubmed: 27029458
pmcid: 4814869
doi: 10.1038/srep23825
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Dasyani, M. et al. Lineage tracing of col10a1 cells identifies distinct progenitor populations for osteoblasts and joint cells in the regenerating fin of medaka (Oryzias latipes). Dev. Biol. 455, 85–99 (2019).
pubmed: 31325454
doi: 10.1016/j.ydbio.2019.07.012
Knytl, M. & Fornaini, N. R. Measurement of chromosomal arms and FISH reveal complex genome architecture and standardized karyotype of model fish, genus Carassius. Cells 10, https://doi.org/10.3390/cells10092343 (2021).
Courtet, M., Flajnik, M. & Du Pasquier, L. Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 25, 149–157 (2001).
pubmed: 11113284
doi: 10.1016/S0145-305X(00)00045-8
Krylov, V., Tlapakova, T. & Macha, J. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet Genome Res. 116, 110–112 (2007).
pubmed: 17268187
doi: 10.1159/000097427
Knytl, M., Tlapakova, T., Vankova, T. & Krylov, V. Silurana chromosomal evolution: a new piece to the puzzle. Cytogenet Genome Res. 156, 223–228 (2018).
pubmed: 30537723
doi: 10.1159/000494708
Seroussi, E. et al. Avian expression patterns and genomic mapping implicate leptin in digestion and TNF in immunity, suggesting that their interacting adipokine role has been acquired only in mammals. Int J. Mol. Sci. 20, 4489 (2019).
pubmed: 31514326
pmcid: 6770569
doi: 10.3390/ijms20184489
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Peng, J. & Xu, J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79, 161–171 (2011).
pubmed: 21987485
pmcid: 3226909
doi: 10.1002/prot.23175
Wang, J. et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 36, 131–135 (2020).
pubmed: 31218344
doi: 10.1093/bioinformatics/btz502