A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Jun 2024
Historique:
received: 20 10 2023
accepted: 17 05 2024
medline: 6 6 2024
pubmed: 6 6 2024
entrez: 5 6 2024
Statut: epublish

Résumé

Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.

Identifiants

pubmed: 38839766
doi: 10.1038/s41467-024-49025-2
pii: 10.1038/s41467-024-49025-2
doi:

Substances chimiques

Transcription Factors 0
DMRT1 protein 0
RNA, Untranslated 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4781

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : STO493/8
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 825753 (ERGO)

Informations de copyright

© 2024. The Author(s).

Références

Herpin, A. & Schartl, M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260–1274 (2015).
pubmed: 26358957 pmcid: 4766460 doi: 10.15252/embr.201540667
Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet 18, 675–689 (2017).
pubmed: 28804140 doi: 10.1038/nrg.2017.60
Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).
pubmed: 24983465 pmcid: 4077654 doi: 10.1371/journal.pbio.1001899
Rovatsos, M. et al. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 25, 3120–3126 (2016).
pubmed: 27037610 doi: 10.1111/mec.13635
Beukeboom, L. W. & Perrin, N. The evolution of sex determination (Oxford University Press, 2014).
Volff, J. N., Nanda, I., Schmid, M. & Schartl, M. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex. Dev. 1, 85–99 (2007).
pubmed: 18391519 doi: 10.1159/000100030
Perrin, N. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043–3049 (2009).
pubmed: 19744117 doi: 10.1111/j.1558-5646.2009.00837.x
Bertho, S., Herpin, A., Schartl, M. & Guiguen, Y. Lessons from an unusual vertebrate sex-determining gene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200092 (2021).
pubmed: 34247499 pmcid: 8273500 doi: 10.1098/rstb.2020.0092
Kuhl, H. et al. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200089 (2021).
pubmed: 34247507 pmcid: 8273502 doi: 10.1098/rstb.2020.0089
Kostmann, A., Kratochvíl, L. & Rovatsos, M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. Biol. Sci. 288, 20202139 (2021).
pubmed: 33468012 pmcid: 7893288
Pan, Q. et al. The rise and fall of the ancient northern pike master sex-determining gene. Elife 10, https://doi.org/10.7554/eLife.62858 (2021).
Ito, M. Sex determination and differentiation in frogs. in Reproductive and Developmental Strategies: The Continuity of Life (eds. Kobayashi, K., Kitano, T., Iwao, Y. & Kondo, M.) 349–366 (Springer Japan, Tokyo, 2018).
Schmid, M. & Steinlein, C. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. in Genes and Mechanisms in Vertebrate Sex Determination (eds. Scherer, G. & Schmid, M.) 143–176 (Birkhäuser Basel, Basel, 2001).
Schartl, M., Schmid, M. & Nanda, I. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125, 553–571 (2016).
pubmed: 26715206 doi: 10.1007/s00412-015-0569-y
Green, D. M. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97, 55–70 (1988).
doi: 10.1007/BF00331795
Roco, Á. et al. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl. Acad. Sci. USA 112, E4752–E4761 (2015).
pubmed: 26216983 pmcid: 4553762 doi: 10.1073/pnas.1505291112
Furman, B. L. S. et al. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 16, e1009121 (2020).
pubmed: 33166278 pmcid: 7652241 doi: 10.1371/journal.pgen.1009121
AmphibiaWeb. See www.amphibiaweb.org (accessed May 2024).
Yoshimoto, S. et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 105, 2469–2474 (2008).
pubmed: 18268317 pmcid: 2268160 doi: 10.1073/pnas.0712244105
Cauret, C. M. S. et al. Developmental systems drift and the drivers of sex chromosome evolution. Mol. Biol. Evol. 37, 799–810 (2020).
pubmed: 31710681 doi: 10.1093/molbev/msz268
Cauret, C. M. S. et al. Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis. Plos Genet. 19, e1010990 (2023).
pubmed: 37792893 pmcid: 10578606 doi: 10.1371/journal.pgen.1010990
Evans, B. J. et al. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J. Evol. Biol. 35, 1777–1790 (2022).
pubmed: 36054077 pmcid: 9722552 doi: 10.1111/jeb.14078
Bogart, J. P. Karyotypes. in Evolution of the genus Bufo (ed. Blair, W. F.) 171–232 (University of Texas Press, 1972).
Schmid, M. Chromosome banding in Amphibia I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66, 361–388 (1978).
doi: 10.1007/BF00328536
Piprek, R. P., Kloc, M. & Kubiak, J. Z. Bidder’s organ–structure, development and function. Int. J. Dev. Biol. 58, 819–827 (2014).
pubmed: 26154323 doi: 10.1387/ijdb.140147rp
Harms, W. Untersuchungen über das Biddersche Organ der männlichen und weiblichen Kröten. Z. Anat. Entwickl. Gesch. 69, 598–629 (1923).
doi: 10.1007/BF02593633
Ponse, K. La proportion sexuelle dans la descendance issue des oeufs produits par l’organe de Bidder des crapauds femelles. Rev. Suisse Zool. 48, 541–544 (1941).
Changxiang, W., Qun, L. & Wei, X. Studies of chromosome banding and sister chromatid exchange in Bufo bufo gargarizans. Acta Gen. Sin. 10, 291–297 (1983).
Abramyan, J., Ezaz, T., Graves, J. A. & Koopman, P. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res. 17, 1015–1024 (2009).
pubmed: 19936947 doi: 10.1007/s10577-009-9095-1
Malone, J. H. & Fontenot, B. E. Patterns of reproductive isolation in toads. PLoS One 3, e3900 (2008).
pubmed: 19065271 pmcid: 2588652 doi: 10.1371/journal.pone.0003900
Stöck, M., Steinlein, C., Lamatsch, D. K., Schartl, M. & Schmid, M. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124, 255–272 (2005).
pubmed: 16134338 doi: 10.1007/s10709-005-3085-9
Ueda, H. Offspring of sex-reversed males in Bufo viridis. Sci. Rep. Lab. Amphib. Biol. Hiroshima. Univ. 10, 155–164 (1990).
Stöck, M. et al. Low rates of X-Y recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (Bufo viridis subgroup). J. Evol. Biol. 26, 674–682 (2013).
pubmed: 23316809 doi: 10.1111/jeb.12086
Brelsford, A. et al. Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67, 2434–2440 (2013).
pubmed: 23888863 doi: 10.1111/evo.12151
Tamschick, S. et al. Sex chromosome conservation, DMRT1 phylogeny and gonad morphology in diploid Palearctic green toads (Bufo viridis subgroup). Cytogenet Genome Res. 144, 315–324 (2014).
pubmed: 25823515 doi: 10.1159/000380841
Betto-Colliard, C., Hofmann, S., Sermier, R., Perrin, N. & Stöck, M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc. Biol. Sci. 285, 20172667 (2018).
pubmed: 29436499 pmcid: 5829204
Burgin, C. et al. Mammal Diversity Database (Version 1.12.1) dataset. Zenodo https://doi.org/10.5281/zenodo.7830771 (2023) (accessed May 2024: https://www.mammaldiversity.org ).
NCBI. See www.ncbi.nlm.nih.gov (accessed May 2024).
Guzmán, K. et al. Identification and characterization of a new family of long satellite DNA, specific of true toads (Anura, Amphibia, Bufonidae). Sci. Rep. 12, 13960 (2022).
pubmed: 35978080 pmcid: 9385698 doi: 10.1038/s41598-022-18051-9
Stöck, M. et al. Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Mol. Phylogenet Evol. 41, 663–689 (2006).
pubmed: 16919484 doi: 10.1016/j.ympev.2006.05.026
Dufresnes, C. et al. Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic. BMC Evol. Biol. 18, 67 (2018).
pubmed: 29720079 pmcid: 5930823 doi: 10.1186/s12862-018-1179-0
Schartl, M. & Herpin, A. Sex determination in vertebrates. in Encyclopedia of Reproduction (2nd Edition) (ed. Skinner, M. K.) 159–167 (Academic Press, 2018).
Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190, https://www.jstor.org/stable/3890061 (1960).
Burren, O. S. et al. Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biol. 18, 165 (2017).
pubmed: 28870212 pmcid: 5584004 doi: 10.1186/s13059-017-1285-0
Jackson, D. A., Dickinson, P. & Cook, P. R. The size of chromatin loops in HeLa cells. EMBO J. 9, 567–571 (1990).
pubmed: 2303042 pmcid: 551702 doi: 10.1002/j.1460-2075.1990.tb08144.x
Lyu, J., Shao, R., Kwong Yung, P. Y. & Elsässer, S. J. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 50, e13 (2022).
pubmed: 34792172 doi: 10.1093/nar/gkab1073
Bayley, R. et al. H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Mol. Cell 82, 1924–1939.e10 (2022).
pubmed: 35439434 pmcid: 9616806 doi: 10.1016/j.molcel.2022.03.030
Giovanni, C. et al. The BOD1L subunit of the mammalian SETD1A complex sustains the expression of DNA damage repair genes despite restraining H3K4 trimethylation. Preprint at https://www.biorxiv.org/content/10.1101/2023.04.06.535882v2 (2023).
Hayashi, S. et al. Neofunctionalization of a Noncoding Portion of a DNA Transposon in the Coding Region of the Chimerical Sex-Determining Gene dm-W in Xenopus Frogs. Mol. Biol. Evol. 39, msac138 (2022).
pubmed: 35763822 pmcid: 9250109 doi: 10.1093/molbev/msac138
Burgos, M. et al. Non-coding RNAs: lncRNAs, miRNAs, and piRNAs in sexual development. Sex. Dev. 15, 335–350 (2021).
pubmed: 34614501 doi: 10.1159/000519237
Joshi, M. & Rajender, S. Long non-coding RNA (lncRNAs) in spermatogenesis, male infertility. Reprod. Biol. Endocrinol. 18, 103 (2020).
pubmed: 33126901 pmcid: 7599102 doi: 10.1186/s12958-020-00660-6
Feng, B. et al. lncRNA DMRT2-as acts as a transcriptional regulator of dmrt2 involving in sex differentiation in the Chinese tongue sol (Cynoglossus semilaevis). Comp. Biochem Physiol. B Biochem Mol. Biol. 253, 110542 (2021).
pubmed: 33301875 doi: 10.1016/j.cbpb.2020.110542
Bowles, J. & Koopman, P. Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401–3411 (2007).
pubmed: 17715177 doi: 10.1242/dev.001107
Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).
pubmed: 26166705 doi: 10.1016/j.molcel.2015.06.007
Higgs, M. R. et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71, 25–41 (2018).
pubmed: 29937342 pmcid: 6039718 doi: 10.1016/j.molcel.2018.05.018
Rodríguez-Marí, A. & Postlethwait, J. H. The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol. 105, 461–490 (2011).
pubmed: 21951543 doi: 10.1016/B978-0-12-381320-6.00020-5
Smallwood, S. A. & Kelsey, G. De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42 (2012).
pubmed: 22019337 doi: 10.1016/j.tig.2011.09.004
Youds, J. L. & Boulton, S. J. The choice in meiosis—defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 124, 501–513 (2011).
pubmed: 21282472 doi: 10.1242/jcs.074427
Ki, B. S. et al. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. Exp. Mol. Med. 54, 1098–1108 (2022).
pubmed: 35918532 pmcid: 9440128 doi: 10.1038/s12276-022-00813-0
Fan, H.-Y. & Sun, Q.-Y. Chapter 12 - Oocyte Meiotic Maturation. in The Ovary (3rd Edition) (eds. Leung, P. C. K. & Adashi, E. Y.) 181–203 (Academic Press, 2019).
Dupont, S. & Capel, B. The chromatin state during gonadal sex determination. Sex. Dev. 15, 308–316 (2021).
pubmed: 34753132 doi: 10.1159/000520007
Garcia-Moreno, S. A. et al. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet. 15, e1007895 (2019).
pubmed: 31116734 pmcid: 6548405 doi: 10.1371/journal.pgen.1007895
Nakamura, M. Sex determination in amphibians. Semin Cell Dev. Biol. 20, 271–282 (2009).
pubmed: 18996493 doi: 10.1016/j.semcdb.2008.10.003
Wolf, J. C. et al. Effects of 17β-estradiol exposure on Xenopus laevis gonadal histopathology. Environ. Toxicol. Chem. 29, 1091–1105 (2010).
pubmed: 20821545 doi: 10.1002/etc.133
Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754 doi: 10.1093/bioinformatics/bts174
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).
pubmed: 31819265 doi: 10.1038/s41592-019-0669-3
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
pubmed: 30936562 doi: 10.1038/s41587-019-0072-8
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522 pmcid: 3137218 doi: 10.1093/bioinformatics/btr330
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562 pmcid: 5635820 doi: 10.1126/science.aal3327
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
pubmed: 27467250 pmcid: 5596920 doi: 10.1016/j.cels.2015.07.012
Kent, W. J. et al. The human genome browser at UCSC. Genome Res 12, 996–1006 (2002).
pubmed: 12045153 pmcid: 186604 doi: 10.1101/gr.229102
Gerchen, J. F. et al. A single transcriptome of a green toad (Bufo viridis) yields candidate genes for sex determination and -differentiation and non-anonymous population genetic markers. PLoS One 11, e0156419 (2016).
pubmed: 27232626 pmcid: 4883742 doi: 10.1371/journal.pone.0156419
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Nie, Fan et al. De novo diploid genome assembly using long noisy reads via haplotype-aware error correction and inconsistent overlap identification. Nat. Commun. 15, 2964 (2024).
pubmed: 38580638 pmcid: 10997618 doi: 10.1038/s41467-024-47349-7
Zhang, H. et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Comm. 12, 6566 (2021).
doi: 10.1038/s41467-021-26865-w
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
pubmed: 36525368 doi: 10.1093/bioinformatics/btac808
Kolmogorov, M. et al. Chromosome assembly of large and complex genomes using multiple references. Genome Res. 28, 1720–1732 (2018).
pubmed: 30341161 pmcid: 6211643 doi: 10.1101/gr.236273.118
Brelsford, A., Dufresnes, C. & Perrin, N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity 116, 177–181 (2016).
pubmed: 26374238 doi: 10.1038/hdy.2015.83
Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. Res 28, 4737–4754 (2019).
doi: 10.1111/mec.15253
Feron, R. et al. RADSex: a computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol. Ecol. Resour. 21, 1715–1731 (2021).
pubmed: 33590960 pmcid: 8589568 doi: 10.1111/1755-0998.13360
https://github.com/RomainFeron/paper-sexdetermination-greentoad-2021 .
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).
pubmed: 25017105 pmcid: 4753679 doi: 10.1038/ng.3036
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Sahlin, K., Lim, M. C. W. & Prost, S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 11, 1392–1398 (2021).
pubmed: 33598139 pmcid: 7863402 doi: 10.1002/ece3.7146
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861 pmcid: 7931819 doi: 10.1093/gigascience/giab008
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
pubmed: 10742046 doi: 10.1093/oxfordjournals.molbev.a026334
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700 pmcid: 7182206 doi: 10.1093/molbev/msaa015
Kamran, H., Tahir, M., Tayara, H. & Chong, K. T. iEnhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. 12, 2120 (2022).
doi: 10.3390/app12042120
Tamschick, S. et al. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci. Rep. 6, 23825 (2016).
pubmed: 27029458 pmcid: 4814869 doi: 10.1038/srep23825
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Dasyani, M. et al. Lineage tracing of col10a1 cells identifies distinct progenitor populations for osteoblasts and joint cells in the regenerating fin of medaka (Oryzias latipes). Dev. Biol. 455, 85–99 (2019).
pubmed: 31325454 doi: 10.1016/j.ydbio.2019.07.012
Knytl, M. & Fornaini, N. R. Measurement of chromosomal arms and FISH reveal complex genome architecture and standardized karyotype of model fish, genus Carassius. Cells 10, https://doi.org/10.3390/cells10092343 (2021).
Courtet, M., Flajnik, M. & Du Pasquier, L. Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 25, 149–157 (2001).
pubmed: 11113284 doi: 10.1016/S0145-305X(00)00045-8
Krylov, V., Tlapakova, T. & Macha, J. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet Genome Res. 116, 110–112 (2007).
pubmed: 17268187 doi: 10.1159/000097427
Knytl, M., Tlapakova, T., Vankova, T. & Krylov, V. Silurana chromosomal evolution: a new piece to the puzzle. Cytogenet Genome Res. 156, 223–228 (2018).
pubmed: 30537723 doi: 10.1159/000494708
Seroussi, E. et al. Avian expression patterns and genomic mapping implicate leptin in digestion and TNF in immunity, suggesting that their interacting adipokine role has been acquired only in mammals. Int J. Mol. Sci. 20, 4489 (2019).
pubmed: 31514326 pmcid: 6770569 doi: 10.3390/ijms20184489
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Peng, J. & Xu, J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79, 161–171 (2011).
pubmed: 21987485 pmcid: 3226909 doi: 10.1002/prot.23175
Wang, J. et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 36, 131–135 (2020).
pubmed: 31218344 doi: 10.1093/bioinformatics/btz502

Auteurs

Heiner Kuhl (H)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.

Wen Hui Tan (WH)

Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.

Christophe Klopp (C)

SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France.

Wibke Kleiner (W)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.

Baturalp Koyun (B)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey.

Mitica Ciorpac (M)

Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania.
Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania.

Romain Feron (R)

Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Martin Knytl (M)

Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic.
Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada.

Werner Kloas (W)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.

Manfred Schartl (M)

Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.

Christoph Winkler (C)

Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore. cwinkler@nus.edu.sg.

Matthias Stöck (M)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany. matthias.stoeck@igb-berlin.de.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH