A disease-associated gene desert directs macrophage inflammation through ETS2.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 Jun 2024
05 Jun 2024
Historique:
received:
17
04
2023
accepted:
01
05
2024
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
5
6
2024
Statut:
aheadofprint
Résumé
Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health
Identifiants
pubmed: 38839969
doi: 10.1038/s41586-024-07501-1
pii: 10.1038/s41586-024-07501-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Miller, F. W. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 80, 102266 (2023).
pubmed: 36446151
doi: 10.1016/j.coi.2022.102266
Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).
pubmed: 31267067
doi: 10.1038/d41573-019-00074-z
de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).
pubmed: 28067908
pmcid: 5289481
doi: 10.1038/ng.3760
International Genetics of Ankylosing Spondylitis Consortium et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).
doi: 10.1038/ng.2667
Ji, S. G. et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269–273 (2017).
pubmed: 27992413
doi: 10.1038/ng.3745
Ortiz-Fernandez, L. et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am. J. Hum. Genet. 108, 84–99 (2021).
pubmed: 33308445
doi: 10.1016/j.ajhg.2020.11.014
Stathias, V. et al. LINCS Data Portal 2.0: next generation access point for perturbation-response signatures. Nucleic Acids Res. 48, D431–D439 (2020).
pubmed: 31701147
doi: 10.1093/nar/gkz1023
Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).
pubmed: 27811931
doi: 10.1038/nrd.2016.184
Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
pubmed: 31915397
pmcid: 7405896
doi: 10.1038/s41586-019-1879-7
King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).
pubmed: 31830040
pmcid: 6907751
doi: 10.1371/journal.pgen.1008489
Cader, M. Z. et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17, 1046–1056 (2016).
pubmed: 27478939
pmcid: 6581540
doi: 10.1038/ni.3532
Murthy, A. et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014).
pubmed: 24553140
doi: 10.1038/nature13044
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843
doi: 10.1016/j.cell.2013.09.053
Park, M. D., Silvin, A., Ginhoux, F. & Merad, M. Macrophages in health and disease. Cell 185, 4259–4279 (2022).
pubmed: 36368305
pmcid: 9908006
doi: 10.1016/j.cell.2022.10.007
Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40, 1211–1215 (2008).
pubmed: 18758464
pmcid: 2770437
doi: 10.1038/ng.203
Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).
pubmed: 24530056
pmcid: 3991396
doi: 10.1016/j.immuni.2014.01.006
Kuo, D. et al. HBEGF
pubmed: 31068444
pmcid: 6726376
doi: 10.1126/scitranslmed.aau8587
Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).
pubmed: 22371084
pmcid: 3297981
doi: 10.1038/nbt.2137
Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).
pubmed: 9694804
pmcid: 317050
doi: 10.1101/gad.12.15.2403
Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat. Commun. 11, 402 (2020).
pubmed: 31964861
pmcid: 6972792
doi: 10.1038/s41467-019-13960-2
Martinez, L. A. Mutant p53 and ETS2, a tale of reciprocity. Front. Oncol. 6, 35 (2016).
pubmed: 26925389
pmcid: 4757666
doi: 10.3389/fonc.2016.00035
Wei, G. et al. Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. J. Immunol. 173, 1374–1379 (2004).
pubmed: 15240733
doi: 10.4049/jimmunol.173.2.1374
Zhao, J., Huang, K., Peng, H. Z. & Feng, J. F. Protein C-ets-2 epigenetically suppresses TLRs-induced interleukin 6 production in macrophages. Biochem. Biophys. Res. Commun. 522, 960–964 (2020).
pubmed: 31810605
doi: 10.1016/j.bbrc.2019.11.123
Chung, S. W., Chen, Y. H. & Perrella, M. A. Role of Ets-2 in the regulation of heme oxygenase-1 by endotoxin. J. Biol. Chem. 280, 4578–4584 (2005).
pubmed: 15590657
doi: 10.1074/jbc.M409125200
Quinn, S. R. et al. The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J. Biol. Chem. 289, 4316–4325 (2014).
pubmed: 24362029
doi: 10.1074/jbc.M113.522730
Ma, X. et al. Ets2 suppresses inflammatory cytokines through MAPK/NF-κB signaling and directly binds to the IL-6 promoter in macrophages. Aging 11, 10610–10625 (2019).
pubmed: 31785145
pmcid: 6914388
doi: 10.18632/aging.102480
Aperlo, C., Pognonec, P., Stanley, E. R. & Boulukos, K. E. Constitutive c-ets2 expression in M1D
pubmed: 8943340
pmcid: 231688
doi: 10.1128/MCB.16.12.6851
Henkel, G. W. et al. PU.1 but not ets-2 is essential for macrophage development from embryonic stem cells. Blood 88, 2917–2926 (1996).
pubmed: 8874188
doi: 10.1182/blood.V88.8.2917.bloodjournal8882917
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).
pubmed: 23991888
pmcid: 3929010
doi: 10.1089/ars.2012.5149
Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).
pubmed: 26045163
pmcid: 4493277
doi: 10.1038/cr.2015.68
Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).
pubmed: 31474370
pmcid: 7060942
doi: 10.1016/j.cell.2019.08.008
Peloquin, J. M. et al. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. JCI Insight 1, e87899 (2016).
pubmed: 27668286
pmcid: 5033062
doi: 10.1172/jci.insight.87899
Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2022).
pubmed: 36038634
pmcid: 9700438
doi: 10.1038/s41588-022-01156-2
Slowikowski, K., Hu, X. & Raychaudhuri, S. SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics 30, 2496–2497 (2014).
pubmed: 24813542
pmcid: 4147889
doi: 10.1093/bioinformatics/btu326
Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).
pubmed: 12628185
pmcid: 4480774
doi: 10.1016/S0092-8674(03)00154-5
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).
pubmed: 23535595
pmcid: 4031686
doi: 10.1038/nature11986
Shiratori, R. et al. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Sci. Rep. 9, 18699 (2019).
pubmed: 31822748
pmcid: 6904735
doi: 10.1038/s41598-019-55296-3
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991
pmcid: 3431496
doi: 10.1101/gr.136184.111
Basuyaux, J. P., Ferreira, E., Stehelin, D. & Buttice, G. The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J. Biol. Chem. 272, 26188–26195 (1997).
pubmed: 9334186
doi: 10.1074/jbc.272.42.26188
Sevilla, L. et al. Bcl-XL expression correlates with primary macrophage differentiation, activation of functional competence, and survival and results from synergistic transcriptional activation by Ets2 and PU.1. J. Biol. Chem. 276, 17800–17807 (2001).
pubmed: 11278399
doi: 10.1074/jbc.M008270200
Kong, L. et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 56, 444–458 (2023).
pubmed: 36720220
pmcid: 9957882
doi: 10.1016/j.immuni.2023.01.002
Chapuy, L. et al. Two distinct colonic CD14
pubmed: 30670762
doi: 10.1038/s41385-018-0126-0
Newman, J. A., Cooper, C. D., Aitkenhead, H. & Gileadi, O. Structural insights into the autoregulation and cooperativity of the human transcription factor Ets-2. J. Biol. Chem. 290, 8539–8549 (2015).
pubmed: 25670864
pmcid: 4375503
doi: 10.1074/jbc.M114.619270
Liu, H. et al. ERK differentially regulates Th17- and T
pubmed: 23620016
doi: 10.1002/eji.201242889
Koboziev, I., Karlsson, F., Zhang, S. & Grisham, M. B. Pharmacological intervention studies using mouse models of the inflammatory bowel diseases: translating preclinical data into new drug therapies. Inflamm. Bowel Dis. 17, 1229–1245 (2011).
pubmed: 21312318
doi: 10.1002/ibd.21557
Argmann, C. et al. Biopsy and blood-based molecular biomarker of inflammation in IBD. Gut 72, 1271–1287 (2023).
pubmed: 36109152
doi: 10.1136/gutjnl-2021-326451
Malle, L. et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c
pubmed: 36813963
pmcid: 9945839
doi: 10.1038/s41586-023-05736-y
Feagan, B. G. et al. Guselkumab plus golimumab combination therapy versus guselkumab or golimumab monotherapy in patients with ulcerative colitis (VEGA): a randomised, double-blind, controlled, phase 2, proof-of-concept trial. Lancet Gastroenterol. Hepatol. 8, 307–320 (2023).
pubmed: 36738762
doi: 10.1016/S2468-1253(22)00427-7
Friedrich, M. et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).
pubmed: 34675383
pmcid: 8604730
doi: 10.1038/s41591-021-01520-5
Klesse, L. J. et al. The use of MEK inhibitors in neurofibromatosis type 1-associated tumors and management of toxicities. Oncologist 25, e1109–e1116 (2020).
pubmed: 32272491
pmcid: 7356675
doi: 10.1634/theoncologist.2020-0069
Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “sum of single effects” model. PLoS Genet. 18, e1010299 (2022).
pubmed: 35853082
pmcid: 9337707
doi: 10.1371/journal.pgen.1010299
1000 Genomes Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
doi: 10.1038/nature09534
Kerimov, N. et al. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat. Genet. 53, 1290–1299 (2021).
Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).
pubmed: 24604202
pmcid: 4064786
doi: 10.1126/science.1246949
Quach, H. et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016).
pubmed: 27768888
pmcid: 5075285
doi: 10.1016/j.cell.2016.09.024
Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414 (2016).
pubmed: 27863251
pmcid: 5119954
doi: 10.1016/j.cell.2016.10.026
Nedelec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).
pubmed: 27768889
doi: 10.1016/j.cell.2016.09.025
Alasoo, K. et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat. Genet. 50, 424–431 (2018).
pubmed: 29379200
pmcid: 6548559
doi: 10.1038/s41588-018-0046-7
Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).
pubmed: 34587156
pmcid: 8504726
doi: 10.1371/journal.pgen.1009440
Bourges, C. et al. Resolving mechanisms of immune-mediated disease in primary CD4 T cells. EMBO Mol. Med. 12, e12112 (2020).
pubmed: 32239644
pmcid: 7207160
doi: 10.15252/emmm.202012112
Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).
pubmed: 27863249
pmcid: 5123897
doi: 10.1016/j.cell.2016.09.037
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).
doi: 10.1186/1471-2105-14-7
Peters, J. E. et al. Insight into genotype-phenotype associations through eQTL mapping in multiple cell types in health and immune-mediated disease. PLoS Genet. 12, e1005908 (2016).
pubmed: 27015630
pmcid: 4807835
doi: 10.1371/journal.pgen.1005908
Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).
pubmed: 35119294
doi: 10.1089/crispr.2021.0113
Kalita, C. A. et al. QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays. Bioinformatics 34, 787–794 (2018).
pubmed: 29028988
doi: 10.1093/bioinformatics/btx598
de Santiago, I. et al. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes. Genome Biol. 18, 39 (2017).
pubmed: 28235418
pmcid: 5326502
doi: 10.1186/s13059-017-1165-7
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090
pmcid: 5623106
doi: 10.1038/nmeth.4396
Calderon, D. et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat. Genet. 51, 1494–1505 (2019).
pubmed: 31570894
pmcid: 6858557
doi: 10.1038/s41588-019-0505-9
Reske, J. J., Wilson, M. R. & Chandler, R. L. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation. Epigenet. Chromatin 13, 22 (2020).
doi: 10.1186/s13072-020-00342-y
Brown, A. C. et al. Comprehensive epigenomic profiling reveals the extent of disease-specific chromatin states and informs target discovery in ankylosing spondylitis. Cell Genom. 3, 100306 (2023).
pubmed: 37388915
pmcid: 10300554
doi: 10.1016/j.xgen.2023.100306
Lienhard, M., Grimm, C., Morkel, M., Herwig, R. & Chavez, L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 30, 284–286 (2014).
pubmed: 24227674
doi: 10.1093/bioinformatics/btt650
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Randzavola, L. O. et al. EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling. eLife 11, e76387 (2022).
pubmed: 36421765
pmcid: 9767466
doi: 10.7554/eLife.76387
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807
pmcid: 7605509
doi: 10.1038/s41587-019-0201-4
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Qing, G. et al. Single-cell RNA sequencing revealed CD14
pubmed: 34671607
pmcid: 8521054
doi: 10.3389/fcell.2021.761300
Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730 (2019).
pubmed: 31348891
pmcid: 6662628
doi: 10.1016/j.cell.2019.06.029
Gao, K. M. et al. Human nasal wash RNA-Seq reveals distinct cell-specific innate immune responses in influenza versus SARS-CoV-2. JCI Insight 6, e152288 (2021).
pubmed: 34618691
pmcid: 8663782
doi: 10.1172/jci.insight.152288
Yang, Q. et al. The interaction of macrophages and CD8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg. Microbes Infect. 12, 2239940 (2023).
pubmed: 37470432
pmcid: 10399483
doi: 10.1080/22221751.2023.2239940
Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020).
pubmed: 32066974
pmcid: 7235950
doi: 10.1038/s41591-020-0752-4
Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900 (2021).
pubmed: 34331874
doi: 10.1016/j.immuni.2021.07.007
Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602 (2019).
pubmed: 30930117
pmcid: 6472943
doi: 10.1016/j.ccell.2019.02.009
Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. 119, 1676–1689 (2023).
pubmed: 36190844
doi: 10.1093/cvr/cvac161
Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).
pubmed: 26974007
pmcid: 4848113
doi: 10.1038/ng.3528
Renauer, P. A. et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in Takayasu arteritis in a genome-wide association study. Arthritis Rheumatol. 67, 1361–1368 (2015).
pubmed: 25604533
pmcid: 4414813
doi: 10.1002/art.39035
Terao, C. et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc. Natl Acad. Sci. USA 115, 13045–13050 (2018).
pubmed: 30498034
pmcid: 6304955
doi: 10.1073/pnas.1808850115
Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
pubmed: 35396580
pmcid: 9392466
doi: 10.1038/s41586-022-04434-5
Bussi, C. et al. Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nat. Commun. 13, 7338 (2022).
pubmed: 36443305
pmcid: 9705561
doi: 10.1038/s41467-022-34632-8
Behrends, V., Tredwell, G. D. & Bundy, J. G. A software complement to AMDIS for processing GC-MS metabolomic data. Anal. Biochem. 415, 206–208 (2011).
pubmed: 21575589
doi: 10.1016/j.ab.2011.04.009
Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. Improved CUT&RUN chromatin profiling tools. eLife 8, e46314 (2019).
pubmed: 31232687
pmcid: 6598765
doi: 10.7554/eLife.46314
Leporcq, C. et al. TFmotifView: a webserver for the visualization of transcription factor motifs in genomic regions. Nucleic Acids Res. 48, W208–W217 (2020).
pubmed: 32324215
pmcid: 7319436
doi: 10.1093/nar/gkaa252
Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).
pubmed: 25215497
pmcid: 4163041
doi: 10.1016/j.cell.2014.08.009
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).
pubmed: 36203011
doi: 10.1038/s41587-022-01483-z
Danaher, P. et al. InSituType: likelihood-based cell typing for single cell spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2022.10.19.512902 (2022).
Vadstrup, K. et al. Validation and optimization of an ex vivo assay of intestinal mucosal biopsies in Crohn’s disease: reflects inflammation and drug effects. PLoS ONE 11, e0155335 (2016).
pubmed: 27171179
pmcid: 4865152
doi: 10.1371/journal.pone.0155335
Prufer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).
pubmed: 24352235
doi: 10.1038/nature12886
Prufer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).
pubmed: 28982794
pmcid: 6185897
doi: 10.1126/science.aao1887
Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).
pubmed: 29562232
pmcid: 6485383
doi: 10.1038/nature26151
Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl Acad. Sci. USA 117, 15132–15136 (2020).
pubmed: 32546518
pmcid: 7334501
doi: 10.1073/pnas.2004944117
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568
pmcid: 3617501
doi: 10.1126/science.1224344
Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).
pubmed: 30135579
pmcid: 6130845
doi: 10.1038/s41586-018-0455-x
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
pubmed: 27654912
pmcid: 5161557
doi: 10.1038/nature18964
Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).
pubmed: 31477933
pmcid: 7610517
doi: 10.1038/s41588-019-0484-x
Speidel, L. et al. Inferring population histories for ancient genomes using genome-wide genealogies. Mol. Biol. Evol. 38, 3497–3511 (2021).
pubmed: 34129037
pmcid: 8383901
doi: 10.1093/molbev/msab174
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
pubmed: 23950696
pmcid: 3738458
doi: 10.1371/journal.pcbi.1003118
Blighe, K. et al. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. Bioconductor https://doi.org/10.18129/B9.bioc.EnhancedVolcano (2023).
Hadley, W. Ggplot2 (Springer, 2016).
Warnes, G. et al. gplots: various R programming tools for plotting data. CRAN https://CRAN.R-project.org/package=gplots (2022).
Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).
pubmed: 28575171
pmcid: 5870550
doi: 10.1093/bioinformatics/btx346
Stankey, C. T. et al. Data for ‘A disease-associated gene desert directs macrophage inflammation through ETS2’. Zenodo https://doi.org/10.5281/zenodo.10707942 (2024).