From sampling to cellblock: The fully automated journey of cytological specimens.
automated embedding
cellblock
cytological samples
cytology
fine needle aspiration
polymer matrix
Journal
Diagnostic cytopathology
ISSN: 1097-0339
Titre abrégé: Diagn Cytopathol
Pays: United States
ID NLM: 8506895
Informations de publication
Date de publication:
06 Jun 2024
06 Jun 2024
Historique:
revised:
23
05
2024
received:
01
04
2024
accepted:
28
05
2024
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
6
6
2024
Statut:
aheadofprint
Résumé
In recent years, technological innovation have emerged to standardize pathology laboratory processes and reduce the handling of diagnostic samples. Among them is an automatic tissue embedding system that eliminates the need for manual activity in tissue paraffin embedding, thereby improving sample preservation. Unfortunately, this system cannot be used for cytological specimens due to the lack of an effective holder to support the procedure steps. In this study, we evaluated the performance of a commercial polymer matrix to enable and standardize the automatic paraffin embedding of cytological material from different organs and sources. Cytological samples from 40 patients were collected on the matrices and submitted for fully automatic workflow preparation, from formalin fixation until paraffin block, using the Sakura embedding system. Our results demonstrated the feasibility of the automated procedure, from loading cytological sample onto the matrix to obtaining the paraffin cellblock, thereby avoiding manual manipulation of cellular material. All samples resulted adequately processed and paraffin-embedded showing satisfactory tissue permeation by processing reagents, optimal preservation of cytoplasmic and nuclear details, and good quality of staining results on paraffin sections. Automated embedding of cytological samples eliminates the risk of lost specimens, reduces laboratory burden, standardizes procedures, increases diagnostic yield, and ultimately improves patients' management.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 Wiley Periodicals LLC.
Références
Evangelopoulos AA, Dalamaga M, Panoutsopoulos K, Dima K. Nomenclature and basic concepts in automation in the clinical laboratory setting: a practical glossary. Clin Lab. 2013;59:1197‐1214. doi:10.7754/CLIN.LAB.2013.130140
Munari E, Scarpa A, Cima L, et al. Cutting‐edge technology and automation in the pathology laboratory. Virchows Arch. 2023;484:555‐566. doi:10.1007/s00428‐023‐03637‐z
Bonucci M, Minelli S, Lo Castro C, et al. Cytomatrix, a new procedure to enhance the diagnostic usefulness of fine needle aspirates. Annals of Research in Oncology. 2021;1(3):170‐4. doi:10.48286/aro.2021.33
Spugnini EP, Menicagli F, Giaconella R, et al. Filling the gap between histology and cytology: description of an innovative technology (Cytomatrix) to increase the diagnostic effectiveness of fine needle aspirates data. J Clin Pathol. 2021;74(4):269‐270. doi:10.1136/jclinpath‐2020‐206545
Pentheroudakis G, Cardoso F, Arnold D, et al. The ESMO guideline strategy: an identity statement and reflections on improvement. Ann Oncol. 2015;26(Suppl 5):v1‐v7. doi:10.1093/annonc/mdv299 PMID: 26314771.
Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 2022;33(1):115‐154. doi:10.1007/s12022‐022‐09708‐2
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231‐1251. doi:10.1093/neuonc/noab106
Wu S, Wang H. IgG4‐related digestive diseases: diagnosis and treatment. Front Immunol. 2023;5(14):1278332. doi:10.3389/fimmu.2023.1278332
Young K, da Cunha SG, Card P, Leighl N. The role of cytology in molecular testing and personalized medicine in lung cancer: a clinical perspective. Cancer Cytopathol. 2019;127(2):72‐78. doi:10.1002/cncy.22085
Wang G, Ionescu DN, Lee CH, et al. PD‐L1 testing on the EBUS‐FNA cytology specimens of non‐small cell lung cancer. Lung Cancer. 2019;136:1‐5. doi:10.1016/j.lungcan.2019.07.033
Nishino M, Krane JF. Next‐generation FNA: expanding the role of cytology in cancer immunotherapy. Cancer Cytopathol. 2020;128(11):780‐781. doi:10.1002/cncy.22306
Canberk S, Montezuma D, Aydın O, et al. The new guidelines of Papanicolaou Society of Cytopathology for respiratory specimens: assessment of risk of malignancy and diagnostic yield in different cytological modalities. Diagn Cytopathol. 2018;46(9):725‐729. doi:10.1002/dc.24036
Ettinger DS, Wood DE, Aggarwal C, et al. NCCN guidelines insights: non–small cell lung cancer, version 1. J Natl Compr Canc Netw. 2019;17:1464‐1472. doi:10.6004/jnccn.2019.0059
Gharib H, Papini E, Garber JR, et al. Nodules, American association of clinical endocrinologists, American college of endocrinology, and associazione Medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules–2016 update. Endocr Pract. 2016;22:622‐639. doi:10.4158/EP161208.GL
Kirbis IS, Maxwell P, Fležar MS, Miller K, Ibrahim M. External quality control for immunocytochemistry on cytology samples: a review of UK NEQAS ICC (cytology module) results. Cytopathology. 2011;22(4):230‐237. doi:10.1111/j.1365‐2303.2011.00867.x
Saharti S. Contemporary art of cell‐block preparation: overview. Cytojournal. 2024;31(21):5. doi:10.25259/Cytojournal_56_2023
Satturwar S, Monaco SE, Xing J, Pantanowitz L. The utility of cell blocks for international cytopathology teleconsultation by whole slide imaging. Cytopathology. 2020;31(5):419‐425. doi:10.1111/cyt.12800
Scarpino S, Taccogna S, Pepe G, et al. Morphological and molecular assessment in thyroid cytology using cell‐capturing scaffolds. Horm Metab Res. 2020;52(11):803‐808. doi:10.1055/a‐1157‐6419
Montella M, Cozzolino I, Zito Marino F, et al. Application of CytoMatrix for the diagnosis of melanoma metastases on FNA cytology samples: performance of a novel cell block method. Cancer Cytopathol. 2023;131(8):516‐525. doi:10.1002/cncy.22707
Minasi S, Bosco D, Moretti B, Giangaspero F, Santoro A, Buttarelli FR. Improvement of the collection, maintenance, and analysis of neoplastic cells from urine specimens with the use of CytoMatrix. Methods Protoc. 2021;4(3):65. doi:10.3390/mps4030065
Bruschini S, di Martino S, Pisanu ME, et al. CytoMatrix for a reliable and simple characterization of lung cancer stem cells from malignant pleural effusions. J Cell Physiol. 2020;235(3):1877‐1887. doi:10.1002/jcp.29121
Samulski TD, Montone K, LiVolsi V, Patel K, Baloch Z. Patient safety curriculum for anatomic pathology trainees: recommendations based on institutional experience. Advances in Anatomic Pathology. 2016;23(2):112‐117. doi:10.1097/PAP.0000000000000108
Verri M, Scarpino S, Naciu AM, et al. Real‐time evaluation of thyroid cytology using new digital microscopy allows for sample adequacy assessment, morphological classification, and supports molecular analysis. Cancers (Basel). 2023;15(17):4215. doi:10.3390/cancers15174215
Amendoeira I, Arcidiacono PG, Barizzi J, et al. New digital confocal laser microscopy may boost real‐time evaluation of endoscopic ultrasound‐guided fine‐needle biopsy (EUS‐FNB) from solid pancreatic lesions: data from an international multicenter study. EBioMedicine. 2022;86:104377. doi:10.1016/j.ebiom.2022.104377
Stigliano S, Crescenzi A, Taffon C, et al. Role of fluorescence confocal microscopy for rapid evaluation of EUS fine‐needle biopsy sampling in pancreatic solid lesions. Gastrointest Endosc. 2021;94(3):562‐568.e1. doi:10.1016/j.gie.2021.03.029