Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain.

Individualization Muscle–tendon diagnostics Patellar tendon adaptation Plyometric loading Prevention Tendon strain

Journal

European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790

Informations de publication

Date de publication:
06 Jun 2024
Historique:
received: 24 01 2024
accepted: 30 05 2024
medline: 6 6 2024
pubmed: 6 6 2024
entrez: 6 6 2024
Statut: aheadofprint

Résumé

Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (ε Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography. Tendon micromorphology was evaluated through an ultrasound peak spatial frequency (PSF) analysis. While a control group (n = 12) continued their regular training, an intervention group (n = 10) performed exercises (3 × /week) with personalized loads to elicit tendon strains that promote tendon adaptation (i.e., 4.5-6.5%). Based on a linear mixed model, ε These results suggest that personalized exercise prescription can reduce muscle-tendon imbalances in athletes and could provide new opportunities for tendon injury prevention.

Identifiants

pubmed: 38842575
doi: 10.1007/s00421-024-05525-z
pii: 10.1007/s00421-024-05525-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Bundesinstitut für Sportwissenschaft
ID : AZ 070509/20-22

Informations de copyright

© 2024. The Author(s).

Références

Alexander RM (1981) Factors of safety in the structure of animals. Sci Prog 67:109–130
pubmed: 7013065
Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210:2743–2753. https://doi.org/10.1242/jeb.003814
doi: 10.1242/jeb.003814 pubmed: 17644689
Arampatzis A, Peper A, Bierbaum S, Albracht K (2010) Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech 43:3073–3079. https://doi.org/10.1016/j.jbiomech.2010.08.014
doi: 10.1016/j.jbiomech.2010.08.014 pubmed: 20863501
Arampatzis A, Mersmann F, Bohm S (2020) Individualized muscle–tendon assessment and training. Front Physiol 11:723. https://doi.org/10.3389/fphys.2020.00723
doi: 10.3389/fphys.2020.00723 pubmed: 32670094 pmcid: 7332733
Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P (2002) Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 20:947–952. https://doi.org/10.1016/S0736-0266(02)00038-4
doi: 10.1016/S0736-0266(02)00038-4 pubmed: 12382958
Bashford GR, Tomsen N, Arya S, Burnfield JM, Kulig K (2008) Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-mode images. IEEE Trans Med Imaging 27:608–615. https://doi.org/10.1109/TMI.2007.912389
doi: 10.1109/TMI.2007.912389 pubmed: 18450534
Bohm S, Mersmann F, Tettke M, Kraft M, Arampatzis A (2014) Human Achilles tendon plasticity in response to cyclic strain: effect of rate and duration. J Exp Biol 217:4010–4017. https://doi.org/10.1242/jeb.112268
doi: 10.1242/jeb.112268 pubmed: 25267851
Bohm S, Mersmann F, Santuz A, Schroll A, Arampatzis A (2021) Muscle-specific economy of force generation and efficiency of work production during human running. Elife. https://doi.org/10.7554/elife.67182
doi: 10.7554/elife.67182 pubmed: 34473056 pmcid: 8412947
Burd NA, West DWD, Staples AW, Atherton PJ, Baker JM, Moore DR et al (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033. https://doi.org/10.1371/journal.pone.0012033.t003
doi: 10.1371/journal.pone.0012033.t003 pubmed: 20711498 pmcid: 2918506
Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ (2007) Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res 21:986–989. https://doi.org/10.1519/R-20235.1
doi: 10.1519/R-20235.1 pubmed: 17685695
Charcharis G, Mersmann F, Bohm S, Arampatzis A (2019) Morphological and mechanical properties of the quadriceps femoris muscle–tendon unit from adolescence to adulthood: effects of age and athletic training. Front Physiol 10:1082. https://doi.org/10.3389/fphys.2019.01082
doi: 10.3389/fphys.2019.01082 pubmed: 31507446 pmcid: 6718516
Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118. https://doi.org/10.1097/00003086-199811000-00016
doi: 10.1097/00003086-199811000-00016
Clemente FM, Silva AF, Clark CCT, Conte D, Ribeiro J, Mendes B et al (2020) Analyzing the seasonal changes and relationships in training load and wellness in elite volleyball players. Int J Sports Physiol Perform 15:731–740. https://doi.org/10.1123/ijspp.2019-0251
doi: 10.1123/ijspp.2019-0251 pubmed: 32015214
Dempster WT (1955) Space requirements of the seated operator: geometrical kinematic, and mechanical aspects of the body with special reference to the limbs. Wright Air Development Center Wright-Patterson Air Force Base, Dayton
Docking SI, Cook J (2019) How do tendons adapt? going beyond tissue responses to understand positive adaptation and pathology development: a narrative review. J Musculoskelet Neuronal Interact 19:300–310
pubmed: 31475937 pmcid: 6737558
Domroes T, Weidlich K, Bohm S, Arampatzis A, Mersmann F (2023) Effect of sex on muscle–tendon imbalances and tendon micromorphology in adolescent athletes—a longitudinal consideration. Scand J Med Sci Sports 33:2561–2572. https://doi.org/10.1111/sms.14483
doi: 10.1111/sms.14483 pubmed: 37697699
Domroes T, Weidlich K, Bohm S, Mersmann F, Arampatzis A (2024) Personalized tendon loading reduces muscle–tendon imbalances in male adolescent elite athletes. Scand J Med Sci Sports 34:e14555. https://doi.org/10.1111/sms.14555
doi: 10.1111/sms.14555 pubmed: 38268075
Fung DT, Wang VM, Laudier DM, Shine JH, Basta-Pljakic J, Jepsen KJ et al (2009) Subrupture tendon fatigue damage. J Orthop Res 27:264–273. https://doi.org/10.1002/jor.20722
doi: 10.1002/jor.20722 pubmed: 18683881 pmcid: 4786739
Götschi T, Held V, Klucker G, Niederöst B, Aagaard P, Spörri J et al (2023) PIEZO1 gain-of-function gene variant is associated with elevated tendon stiffness in humans. J Appl Physiol (bethesda, MD.: 1985) 135:165–173. https://doi.org/10.1152/japplphysiol.00573.2022
doi: 10.1152/japplphysiol.00573.2022
Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M (2013) Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J 27:2074–2079. https://doi.org/10.1096/fj.12-225599
doi: 10.1096/fj.12-225599 pubmed: 23401563 pmcid: 3633810
Herzog W, Read LJ (1993) Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat 182(Pt 2):213–230
pubmed: 8376196 pmcid: 1259832
Herzog W, Abrahamse SK, ter Keurs HE (1990) Theoretical determination of force-length relations of intact human skeletal muscles using the cross-bridge model. Pflug Arch 416:113–119. https://doi.org/10.1007/BF00370231
doi: 10.1007/BF00370231
Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ et al (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18:220–227. https://doi.org/10.1002/jor.1100180209
doi: 10.1002/jor.1100180209 pubmed: 10815822
Karamanidis K, Epro G (2020) Monitoring muscle–tendon adaptation over several years of athletic training and competition in elite track and field jumpers. Front Physiol 11:607544. https://doi.org/10.3389/fphys.2020.607544
doi: 10.3389/fphys.2020.607544 pubmed: 33391022 pmcid: 7772406
Kawakami Y, Fukunaga T (2006) New insights into in vivo human skeletal muscle function. Exerc Sport Sci Rev 34:16–21. https://doi.org/10.1097/00003677-200601000-00005
doi: 10.1097/00003677-200601000-00005 pubmed: 16394810
Kulig K, Landel R, Chang Y-J, Hannanvash N, Reischl SF, Song P et al (2013) Patellar tendon morphology in volleyball athletes with and without patellar tendinopathy. Scand J Med Sci Sports 23:e81–e88. https://doi.org/10.1111/sms.12021
doi: 10.1111/sms.12021 pubmed: 23253169
Kulig K, Chang Y-J, Winiarski S, Bashford GR (2016) Ultrasound-based tendon micromorphology predicts mechanical characteristics of degenerated tendons. Ultrasound Med Biol 42:664–673. https://doi.org/10.1016/j.ultrasmedbio.2015.11.013
doi: 10.1016/j.ultrasmedbio.2015.11.013 pubmed: 26718836
LaCroix AS, Duenwald-Kuehl SE, Lakes RS, Vanderby R (2013) Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol (bethesda, MD) 115:43–51. https://doi.org/10.1152/japplphysiol.01449.2012
doi: 10.1152/japplphysiol.01449.2012
Lambrianides Y, Epro G, Arampatzis A, Karamanidis K (2024) Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scand J Med Sci Sports 34:e14638. https://doi.org/10.1111/sms.14638
doi: 10.1111/sms.14638 pubmed: 38671559
Lavagnino M, Arnoczky SP (2005) In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res 23:1211–1218. https://doi.org/10.1016/j.orthres.2005.04.001
doi: 10.1016/j.orthres.2005.04.001 pubmed: 15908162
Lavagnino M, Arnoczky SP, Egerbacher M, Gardner KL, Burns ME (2006) Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J Biomech 39:2355–2362. https://doi.org/10.1016/j.jbiomech.2005.08.008
doi: 10.1016/j.jbiomech.2005.08.008 pubmed: 16256123
Lian OB, Engebretsen L, Bahr R (2005) Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33:561–567. https://doi.org/10.1177/0363546504270454
doi: 10.1177/0363546504270454 pubmed: 15722279
Lichtwark GA, Wilson AM (2007) Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J Biomech 40:1768–1775. https://doi.org/10.1016/j.jbiomech.2006.07.025
doi: 10.1016/j.jbiomech.2006.07.025 pubmed: 17101140
Lohrer H, Nauck T (2011) Cross-cultural adaptation and validation of the VISA-P questionnaire for German-speaking patients with patellar tendinopathy. J Orthop Sports Phys Ther 41:180–190. https://doi.org/10.2519/jospt.2011.3354
doi: 10.2519/jospt.2011.3354 pubmed: 21289458
Maganaris CN (2003) Tendon conditioning: artefact or property? Proc Biol Sci 270(Suppl 1):S39-42. https://doi.org/10.1098/rsbl.2003.0004
doi: 10.1098/rsbl.2003.0004 pubmed: 12952631 pmcid: 1698017
Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6:262–268. https://doi.org/10.1038/nrrheum.2010.43
doi: 10.1038/nrrheum.2010.43 pubmed: 20308995
Mendoza E, Azizi E (2021) Tuned muscle and spring properties increase elastic energy storage. J Exp Biol. https://doi.org/10.1242/jeb.243180
doi: 10.1242/jeb.243180 pubmed: 34821932 pmcid: 10658917
Mersmann F, Bohm S, Schroll A, Marzilger R, Arampatzis A (2016) Athletic training affects the uniformity of muscle and tendon adaptation during adolescence. J Appl Physiol (bethesda, MD.: 1985) 121:893–899. https://doi.org/10.1152/japplphysiol.00493.2016
doi: 10.1152/japplphysiol.00493.2016
Mersmann F, Bohm S, Schroll A, Boeth H, Duda GN, Arampatzis A (2017) Muscle and tendon adaptation in adolescent athletes: a longitudinal study. Scand J Med Sci Sports 27:75–82. https://doi.org/10.1111/sms.12631
doi: 10.1111/sms.12631 pubmed: 26644277
Mersmann F, Pentidis N, Tsai M-S, Schroll A, Arampatzis A (2019) Patellar tendon strain associates to tendon structural abnormalities in adolescent athletes. Front Physiol 10:963. https://doi.org/10.3389/fphys.2019.00963
doi: 10.3389/fphys.2019.00963 pubmed: 31427983 pmcid: 6687848
Mersmann F, Domroes T, Pentidis N, Tsai M-S, Bohm S, Schroll A et al (2021) Prevention of strain-induced impairments of patellar tendon micromorphology in adolescent athletes. Scand J Med Sci Sports 31:1708–1718. https://doi.org/10.1111/sms.13979
doi: 10.1111/sms.13979 pubmed: 33909297
Mersmann F, Domroes T, Tsai M-S, Pentidis N, Schroll A, Bohm S et al (2023) Longitudinal evidence for high-level patellar tendon strain as a risk factor for tendinopathy in adolescent athletes. Sports Med Open 9:83. https://doi.org/10.1186/s40798-023-00627-y
doi: 10.1186/s40798-023-00627-y pubmed: 37673828 pmcid: 10482817
Mitchell CJ, Churchward-Venne TA, West DWD, Burd NA, Breen L, Baker SK et al (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77. https://doi.org/10.1152/japplphysiol.00307.2012
doi: 10.1152/japplphysiol.00307.2012 pubmed: 22518835 pmcid: 3404827
Nikolaidou ME, Marzilger R, Bohm S, Mersmann F, Arampatzis A (2017) Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping. Royal Soc Open Sci 4:170185. https://doi.org/10.1098/rsos.170185
doi: 10.1098/rsos.170185
Orselli MIV, Franz JR, Thelen DG (2017) The effects of Achilles tendon compliance on triceps surae mechanics and energetics in walking. J Biomech 60:227–231. https://doi.org/10.1016/j.jbiomech.2017.06.022
doi: 10.1016/j.jbiomech.2017.06.022 pubmed: 28728791 pmcid: 5555172
Passini FS, Jaeger PK, Saab AS, Hanlon S, Chittim NA, Arlt MJ et al (2021) Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat Biomed Eng 5:1457–1471. https://doi.org/10.1038/s41551-021-00716-x
doi: 10.1038/s41551-021-00716-x pubmed: 34031557 pmcid: 7612848
Pentidis N, Mersmann F, Bohm S, Schroll A, Giannakou E, Aggelousis N et al (2021) Development of muscle–tendon adaptation in preadolescent gymnasts and untrained peers: a 12-month longitudinal study. Med Sci Sports Exerc 53:2565–2576. https://doi.org/10.1249/MSS.0000000000002742
doi: 10.1249/MSS.0000000000002742 pubmed: 34649260
Pizzolato C, Lloyd DG, Zheng MH, Besier TF, Shim VB, Obst SJ et al (2018) Finding the sweet spot via personalised Achilles tendon training: the future is within reach. Br J Sports Med 53:11–12. https://doi.org/10.1136/bjsports-2018-099020
doi: 10.1136/bjsports-2018-099020 pubmed: 30030281
Roberts TJ (2016) Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J Exp Biol 219:266–275. https://doi.org/10.1242/jeb.124446
doi: 10.1242/jeb.124446 pubmed: 26792339 pmcid: 6514471
Ros SJ, Muljadi PM, Flatow EL, Andarawis-Puri N (2019) Multiscale mechanisms of tendon fatigue damage progression and severity are strain and cycle dependent. J Biomech 85:148–156. https://doi.org/10.1016/j.jbiomech.2019.01.026
doi: 10.1016/j.jbiomech.2019.01.026 pubmed: 30732906 pmcid: 6608713
Rosengarten SD, Cook JL, Bryant AL, Cordy JT, Daffy J, Docking SI (2015) Australian football players’ Achilles tendons respond to game loads within 2 days: an ultrasound tissue characterisation (UTC) study. Br J Sports Med 49:183–187. https://doi.org/10.1136/bjsports-2013-092713
doi: 10.1136/bjsports-2013-092713 pubmed: 24735840
Rudavsky A, Cook J, Magnusson SP, Kjaer M, Docking S (2019) Characterising the proximal patellar tendon attachment and its relationship to skeletal maturity in adolescent ballet dancers. Muscle Ligaments Tendons J 07:306. https://doi.org/10.32098/mltj.02.2017.13
doi: 10.32098/mltj.02.2017.13
Sánchez Moreno M, García Asencio C, González Badillo JJ, Díaz Cueli D (2017) Strength and vertical jump performance changes in elite male volleyball players during the season (Cambios en el rendimiento en fuerza y salto vertical en jugadores de élite masculinos de voleibol durante la temporada). Retos 34:291–294. https://doi.org/10.47197/retos.v0i34.65898
doi: 10.47197/retos.v0i34.65898
Sawicki GS, Robertson BD, Azizi E, Roberts TJ (2015) Timing matters: tuning the mechanics of a muscle–tendon unit by adjusting stimulation phase during cyclic contractions. J Exp Biol 218:3150–3159. https://doi.org/10.1242/jeb.121673
doi: 10.1242/jeb.121673 pubmed: 26232413 pmcid: 4631775
Schulze F, Mersmann F, Bohm S, Arampatzis A (2012) A wide number of trials is required to achieve acceptable reliability for measurement patellar tendon elongation in vivo. Gait Posture 35:334–338. https://doi.org/10.1016/j.gaitpost.2011.09.107
doi: 10.1016/j.gaitpost.2011.09.107 pubmed: 22178032
van Drongelen S, Boninger ML, Impink BG, Khalaf T (2007) Ultrasound imaging of acute biceps tendon changes after wheelchair sports. Arch Phys Med Rehabil 88:381–385. https://doi.org/10.1016/j.apmr.2006.11.024
doi: 10.1016/j.apmr.2006.11.024 pubmed: 17321833
Wang T, Lin Z, Day RE, Gardiner B, Landao-Bassonga E, Rubenson J et al (2013) Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnol Bioeng 110:1495–1507. https://doi.org/10.1002/bit.24809
doi: 10.1002/bit.24809 pubmed: 23242991
Wang T, Lin Z, Ni M, Thien C, Day RE, Gardiner B et al (2015) Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system. J Orthop Res 33:1888–1896. https://doi.org/10.1002/jor.22960
doi: 10.1002/jor.22960 pubmed: 26123799
Weidlich K, Mersmann F, Domroes T, Schroll A, Bohm S, Arampatzis A (2023) Quantification of patellar tendon strain and opportunities for personalized tendon loading during back squats. Sci Rep 13:8661. https://doi.org/10.1038/s41598-023-35441-9
doi: 10.1038/s41598-023-35441-9 pubmed: 37248376 pmcid: 10226975
Wren TAL, Lindsey DP, Beaupré GS, Carter DR (2003) Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann Biomed Eng 31:710–717. https://doi.org/10.1114/1.1569267
doi: 10.1114/1.1569267 pubmed: 12797621
Yang G, Crawford RC, Wang JH-C (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37:1543–1550. https://doi.org/10.1016/j.jbiomech.2004.01.005
doi: 10.1016/j.jbiomech.2004.01.005 pubmed: 15336929
Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28:888–892. https://doi.org/10.1177/03635465000280061901
doi: 10.1177/03635465000280061901 pubmed: 11101114
Zhang C, Couppé C, Scheijen JLJM, Schalkwijk CG, Kjaer M, Magnusson SP et al (2020) Regional collagen turnover and composition of the human patellar tendon. J Appl Physiol (bethesda, MD.: 1985) 128:884–891. https://doi.org/10.1152/japplphysiol.00030.2020
doi: 10.1152/japplphysiol.00030.2020
Zitnay JL, Jung GS, Lin AH, Qin Z, Li Y, Yu SM et al (2020) Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. Sci Adv 6(35):eaba2795. https://doi.org/10.1126/sciadv.aba2795
doi: 10.1126/sciadv.aba2795 pubmed: 32923623 pmcid: 7455178

Auteurs

Kolja Weidlich (K)

Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Theresa Domroes (T)

Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Sebastian Bohm (S)

Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Adamantios Arampatzis (A)

Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Falk Mersmann (F)

Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany. falk.mersmann@hu-berlin.de.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany. falk.mersmann@hu-berlin.de.

Classifications MeSH