Citrus-mediated gene silencing of cytochrome P
Asian citrus psyllid
Diaphorina citri
Huanglongbing
RNA interference
cytochrome P450
insecticides
virus‐induced gene silencing
Journal
Pest management science
ISSN: 1526-4998
Titre abrégé: Pest Manag Sci
Pays: England
ID NLM: 100898744
Informations de publication
Date de publication:
06 Jun 2024
06 Jun 2024
Historique:
revised:
08
04
2024
received:
22
01
2024
accepted:
20
05
2024
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
6
6
2024
Statut:
aheadofprint
Résumé
Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.
Sections du résumé
BACKGROUND
BACKGROUND
Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P
RESULTS
RESULTS
Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP
CONCLUSION
CONCLUSIONS
The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 Society of Chemical Industry.
Références
Bové JM, Huanglongbing: a destructive, newly‐emerging, century‐old disease of citrus. J Plant Pathol 88:7–37 (2006).
Grafton‐Cardwell EE, Stelinski LL and Stansly PA, Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 58:413–432 (2013).
Halbert SE, The discovery of huanglongbing in Florida, Proc Int citrus canker huanglongbing Res Work Orlando, H‐3 (2005).
Ammar ED, George J, Sturgeon K, Stelinski LL and Shatters RG, Asian citrus psyllid adults inoculate huanglongbing bacterium more efficiently than nymphs when this bacterium is acquired by early instar nymphs. Sci Rep 10:1–10 (2020).
Narouei‐Khandan HA, Halbert SE, Worner SP and van Bruggen AHC, Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. Eur J Plant Pathol 144:655–670 (2016).
Qureshi JA, Kostyk BC and Stansly PA, Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of huanglongbing pathogens. PLoS One 9:e112331 (2014).
Vashisth T, Managing the health and productivity of HLB‐affected groves. EDIS 1288:2–5 (2017).
Tiwari S, Mann RS, Rogers ME and Stelinski LL, Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag Sci 67:1258–1268 (2011).
Tiwari S, Pelz‐Stelinski K and Stelinski LL, Effect of Candidatus Liberibacter asiaticus infection on susceptibility of Asian citrus psyllid, Diaphorina citri, to selected insecticides. Pest Manag Sci 67:94–99 (2011).
Chen XD, Gill TA, Pelz‐Stelinski KS and Stelinski LL, Risk assessment of various insecticides used for management of Asian citrus psyllid, Diaphorina citri in Florida citrus, against honey bee, Apis mellifera. Ecotoxicology 26:351–359 (2017).
Tang T, Zhao M, Wang P, Huang S and Fu W, Control efficacy and joint toxicity of thiamethoxam mixed with spirotetramat against the Asian citrus psyllid, Diaphorina citri Kuwayama. Pest Manag Sci 77:168–176 (2021).
Tiwari S, Gondhalekar AD, Mann RS, Scharf ME and Stelinski LL, Characterization of five CYP4 genes from Asian citrus psyllid and their expression levels in Candidatus Liberibacter asiaticus‐infected and uninfected psyllids. Insect Mol Biol 20:733–744 (2011).
Chen XD, Neupane S, Gill TA, Gossett H, Pelz‐Stelinski KS and Stelinski LL, Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), using RNA‐sequencing. Insect Sci 28:1708–1720 (2021).
Kanga LHB, Eason J, Haseeb M, Qureshi J and Stansly P, Monitoring for insecticide resistance in Asian citrus psyllid (Hemiptera: Psyllidae) populations in Florida. J Econ Entomol 109:832–836 (2016).
Langdon KW and Rogers ME, Neonicotinoid‐induced mortality of Diaphorina Citri (Hemiptera: Liviidae) is affected by route of exposure. J Econ Entomol 110:2229–2234 (2017).
Jeschke P, Nauen R and Beck ME, Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed Engl 52:9464–9485 (2013).
Elbert A, Haas M, Springer B, Thielert W and Nauen R, Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 63:1100–1106 (2008).
Vázquez‐García M, Velázquez‐Monreal J, Medina‐Urrutia VM, Cruz‐Vargas CDJ, Sandoval‐Salazar M, Virgen‐Calleros G et al., Insecticide resistance in adult Diaphorina citri Kuwayama from lime orchards in central west Mexico. Southwest Entomol 38:579–596 (2013).
Chen XD, Gill TA, Ashfaq M, Pelz‐Stelinski KS and Stelinski LL, Resistance to commonly used insecticides in Asian citrus psyllid: stability and relationship to gene expression. J Appl Entomol 142:967–977 (2018).
Chen XD, George J, Diepenbrock LM, Gossett H, Liu G, Qureshi JA et al., Feeding behavior and hormoligosis associated with imidacloprid resistance in Asian citrus psyllid, Diaphorina citri. Insect Sci e13293 (2024). https://doi.org/10.1111/1744-7917.13293.
Heidel‐Fischer HM and Vogel H, Molecular mechanisms of insect adaptation to plant secondary compounds. Curr Opin Insect Sci 8:8–14 (2015).
Berenbaum MR and Johnson RM, Xenobiotic detoxification pathways in honey bees. Curr Opin Insect Sci 10:51–58 (2015).
Feyereisen R, insect P450 enzymes. Annu Rev Entomol 44:507–533 (1999).
Feyereisen R, Insect CYP genes and P450 enzymes, in Insect Molecular Biology and Biochemistry, ed. by Gilbert LI. Academic Press, New York, pp. 236–316 (2012).
Cheesman MJ, Traylor MJ, Hilton ME, Richards KE, Taylor MC, Daborn PJ et al., Soluble and membrane‐bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: purification, activity, and binding properties toward multiple pesticides. Insect Biochem Mol Biol 43:455–465 (2013).
Labade CP, Jadhav AR, Ahire M, Zinjarde SS and Tamhane VA, Role of induced glutathione‐S‐transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST‐8 in detoxification of pesticides. Ecotoxicol Environ Saf 147:612–621 (2018).
David J‐P, Ismail HM, Chandor‐Proust A and Paine MJI, Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito‐borne diseases and use of insecticides on earth. Philos Trans R Soc Lond B Biol Sci 368:20120429 (2013).
Killiny N, Hajeri S, Tiwari S, Gowda S and Stelinski LL, Double‐stranded RNA uptake through topical application mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS One 9:1–8 (2014).
Kishk A, Hijaz F, Anber HAI, AbdEl‐Raof TK, El‐Sherbeni AHD, Hamed S et al., RNA interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides. Pestic Biochem Physiol 143:81–89 (2017).
Yu X and Killiny N, RNA interference of two glutathione S‐transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Pest Manag Sci 74:638–647 (2018).
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC, Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 391:806–811 (1998).
Wuriyanghan H, Rosa C and Falk BW, Oral delivery of double‐stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLoS One 6:e27736 (2011).
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S et al., Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14 (2013).
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D and Bucher G, Exploring systemic RNA interference in insects: a genome‐wide survey for RNAi genes in Tribolium. Genome Biol 9:R10 (2008).
Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW et al., Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304 (2004).
Dietzl G, Chen D, Schnorrer F, Su K‐C, Barinova Y, Fellner M et al., A genome‐wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156 (2007).
Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S et al., RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245 (2011).
Zhang M, Zhou Y, Wang H, Jones H, Gao Q, Wang D et al., Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14:560 (2013).
Huvenne H and Smagghe G, Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235 (2010).
El‐Shesheny I, Hajeri S, El‐Hawary I, Gowda S and Killiny N, Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 8:2–9 (2013).
Porta C and Lomonossoff GP, Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev 19:245–292 (2002).
Gleba Y, Klimyuk V and Marillonnet S, Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141 (2007).
Dawson WO and Folimonova SY, Virus‐based transient expression vectors for woody crops : a new frontier for vector design and use. Annu Rev Phytopathol 51:321–337 (2013).
Koonin EV and Dolja VV, A virocentric perspective on the evolution of life. Curr Opin Virol 3:546–557 (2013).
Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Koonin EV, Niblett CL et al., Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520 (1995).
El‐Mohtar C and Dawson WO, Exploring the limits of vector construction based on citrus tristeza virus. Virology 448:274–283 (2014).
Hodges AW and Spreen T, Economic contributions of the Florida citrus industry in 2006/07–2010/11. Edis:FE903 (2012).
Hajeri S, Killiny N, El‐Mohtar C, Dawson WO and Gowda S, Citrus tristeza virus‐based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem‐sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol 176:42–49 (2014).
Satyanarayana T, Gowda S, Boyko VP, Albiach‐Marti MR, Mawassi M, Navas‐Castillo J et al., An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci U S A 96:7433–7438 (1999).
Satyanarayana T, Bar‐Joseph M, Mawassi M, Albiach‐Martí MR, Ayllón MA, Gowda S et al., Amplification of citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology 280:87–96 (2001).
Gowda S, Satyanarayana T, Robertson CJ, Garnsey SM and Dawson WO, Infection of citrus plants with virions generated in Nicotiana benthamiana plants agro infiltrated with a binary vector based citrus tristeza virus. Int Organ Citrus Virol Conf Proc 16:23–33 (2005).
Chomczynski P and Sacchi N, Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction. Anal Biochem 162:156–159 (1987).
Dalmay T, Hamilton A, Rudd S, Angell S and Baulcombe DC, An RNA‐dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553 (2000).
Livak KJ and Schmittgen TD, Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 (2001).
Tiwari S, Pelz‐Stelinski K, Mann RS and Stelinski LL, Glutathione transferase and cytochrome P450 (general oxidase) activity levels in Candidatus Liberibacter Asiaticus‐infected and uninfected Asian citrus psyllid (Hemiptera: Psyllidae). Ann Entomol Soc Am 104:297–305 (2011).
Penilla RP, Rodríguez AD, Hemingway J, Trejo A, López AD and Rodríguez MH, Cytochrome P450‐based resistance mechanism and pyrethroid resistance in the field Anopheles albimanus resistance management trial. Pestic Biochem Physiol 89:111–117 (2007).
Prabhaker N, Castle SJ and Toscano NC, Susceptibility of immature stages of Homalodisca coagulata (Hemiptera: Cicadellidae) to selected insecticides. J Econ Entomol 99:1805–1812 (2006).
Hall DG, Biology, history and world status of Diaphorina citri, Proc Int Work Huanglongbing Asian Citrus Psyllid North Am Plant Prot Organ May, Hermosillo, Son Mex:1–11 (2008).
Hall DG, Hentz MG and Adair RC Jr, Population ecology and phenology of Diaphorina citri (Hemiptera : Psyllidae) in two Florida citrus groves. Environ Entomol 37:914–924 (2008).
Kaplan EL and Meier P, Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481 (1958).
Tiwari S, Killiny N and Stelinski LL, Dynamic insecticide susceptibility changes in Florida populations of Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol 106:393–399 (2013).
Grafton‐Cardwell EE, Ouyang Y and Salse J, Insecticide resistance and esterase enzyme variation in the California red scale (Homoptera: Diaspididae). J Econ Entomol 91:812–819 (1998).
Grafton‐Cardwell EE and Vehrs SLC, Monitoring for organophosphate‐ and carbamate‐resistant Arlllored scale (Homoptera : Diaspididae) in San Joaquin valley citrus. J Econ Entomol 88:495–504 (1995).
Morse JG and Brawner OL, Toxicity of pesticides to Scirtothrips citri (Thysanoptera: Thripidae) and implications to resistance management. J Econ Entomol 79:565–570 (1986).
Byrne FJ and Redak RA, Insecticide resistance in California populations of the glassy‐winged sharpshooter Homalodisca vitripennis. Pest Manag Sci 77:2315–2323 (2021).
George A, Rao CN and Rahangadale S, Current status of insecticide resistance in Aphis gossypii and Aphis spiraecola (Hemiptera: Aphididae) under central Indian conditions in citrus. Cogent Biol 5:1660494 (2019).
Mruthunjayaswamy P, Thiruvengadam V and Kumar JS, Detection of insecticide resistance in field populations of citrus mealybug Planococcus citri (Risso) (Hemiptera: Pseudococcidae). Indian J Exp Biol 57:435–442 (2019).
Saddiq B, Shad SA, Khan HAA, Aslam M, Ejaz M and Afzal MBS, Resistance in the mealybug Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) in Pakistan to selected organophosphate and pyrethroid insecticides. Crop Prot 66:29–33 (2014).
Charles JG, Walker JTS and White V, Resistance to chlorpyrifos in the mealybugs Pseudococcus affinis and P. longispinus in Hawkes Bay and Waikato pipfruit orchards, in Proc Forty Sixth New Zeal Plant Prot Conf Christchurch, New Zealand 10–12 Aug Vol. 46. New Zealand Plant Protection Society, Christchurch, pp. 120–125 (1993).
Wang N, Stelinski LL, Pelz‐Stelinski KS, Graham JH and Zhang Y, Tale of the Huanglongbing disease pyramid in the context of the citrus microbiome. Phytopathology 107:380–387 (2017).
Lewis‐Rosenblum H, Martini X, Tiwari S and Stelinski LL, Seasonal movement patterns and long‐range dispersal of Asian citrus psyllid in Florida citrus. J Econ Entomol 108:3–10 (2015).
Qureshi JA and Stansly PA, Exclusion techniques reveal significant biotic mortality suffered by Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae) populations in Florida citrus. Biol Control 50:129–136 (2009).
Boina DR, Onagbola EO, Salyani M and Stelinski LL, Antifeedant and sub lethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 65:870–877 (2009).
Bassanezi BR, Lopez AS, De Miranda PM, Wulff AN, Volpe HXL and Ayres AJ, Overview of citrus huanglongbing spread and management strategies in Brazil. Trop Plant Pathol 45:251–264 (2020).
Arratia‐Castro AA, Santos‐Cervantes ME, Arce‐Leal ÁP, Espinoza‐Mancillas MG, Rodríguez Negrete EA, Méndez‐Lozano J et al., Detection and quantification of ‘Candidatus Phytoplasma asteris’ and ‘Candidatus Liberibacter asiaticus’ at early and late stages of Huanglongbing disease development. Can J Plant Pathol 38:411–421 (2016).
Tiwari S, Stelinski LL and Rogers ME, Biochemical basis of organophosphate and carbamate resistance in Asian citrus psyllid. J Econ Entomol 105:540–548 (2012).
Liu B, Coy MR, Wang JJ and Stelinski LL, Characterization of the voltage‐gated sodium channel of the Asian citrus psyllid, Diaphorina citri. Insect Sci 24:47–59 (2017).
Chen XD, Gill TA, Nguyen CD, Killiny N, Pelz‐Stelinski KS and Stelinski LL, Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid. Insect Sci 26:843–852 (2019).
Chen XD and Stelinski LL, Resistance management for Asian citrus psyllid, Diaphorina citri Kuwayama, in Florida. Insects 8:1–10 (2017).
Fundecitrus, https://citrusindustry.net/2023/06/07/psyllids-resistant-to-insecticides-in-brazil/, (2023).
Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG and Bock R, Full crop protection from an insect pest by expression of long double‐stranded RNAs in plastids. Science 347:991–994 (2015).
Li X, Liu X, Lu W, Yin X and An S, Application progress of plant‐mediated RNAi in pest control. Front Bioeng Biotechnol 10:963026 (2022). https://doi.org/10.3389/fbioe.2022.963026.
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C and Kogel K‐H, RNA‐based technologies for insect control in plant production. Biotechnol Adv 39:107463 (2020).