Programmed death-ligand 1 expression in carcinoma of unknown primary.
Carcinoma
PD-L1
Primary known
Journal
BMC cancer
ISSN: 1471-2407
Titre abrégé: BMC Cancer
Pays: England
ID NLM: 100967800
Informations de publication
Date de publication:
06 Jun 2024
06 Jun 2024
Historique:
received:
19
02
2024
accepted:
28
05
2024
medline:
7
6
2024
pubmed:
7
6
2024
entrez:
6
6
2024
Statut:
epublish
Résumé
We examined the expression of programmed death-ligand 1 (PD-L1) in carcinoma of unknown primary (CUP) and its potential implications. Tissue microarrays were constructed for 72 CUP cases (histologic subtypes: 22 adenocarcinoma, 15 poorly differentiated carcinoma, 19 squamous cell carcinoma, and 14 undifferentiated carcinoma; clinical subtype: favorable type 17 [23.6%], unfavorable type 55 [76.4%]), with immunohistochemical staining performed for PD-L1 (22C3, SP142, SP263, and 28 - 8), CK7, and CK20 to determine the association between staining results and clinicopathological parameters. In CUP, the PD-L1 positivity rate was 5.6-48.6% (tumor cells [TC] or tumor proportion score [TPS]: 5.6-36.1%, immune cell score [IC]: 8.3-48.6%, combined positive score [CPS]: 16.7%) using different cutoff values for 22C3 (TPS ≥ 1%, CPS ≥ 10), SP142 (TC ≥ 50%, IC ≥ 10%), SP263, and 28 - 8 (TC and IC ≥ 1%). PD-L1 SP142 TC and PD-L1 SP263 IC showed the lowest (5.6%) and highest (48.6%) positivity rates, respectively. The PD-L1 positivity rate did not significantly differ based on the histologic subtype, clinical subtype, or CK7/CK20 across clones. Considering TC κ ≥ 1%, TC κ ≥ 50%, IC κ ≥ 1%, and IC κ ≥ 10%, the PD-L1 positivity rate was TC = 4.2-36.1% and IC = 9.7-48.6%; the overall agreement between antibodies ranged from 69.4 to 93.1%, showing fair or better agreement (κ ≥ 0.21). In CUP, PD-L1 positivity varied depending on antibodies and scoring systems, with no difference observed according to histologic or clinical subtypes. Carcinoma of unknown primary (CUP) refers to a heterogeneous collection of cancers where metastatic growth is observed, but the origin of the primary tumor remains unidentified. The type of primary cancer is critical for establishing the treatment strategy in metastatic carcinoma, presenting a considerable challenge in CUP. Patients with programmed death-ligand 1 (PD-L1)–positive tumors are well-known to benefit from targeted therapy against PD-L1. However, the expression of PD-L1 in CUP remains poorly explored. The present study demonstrated that PD-L1 was expressed in CUP with varying positivity rates depending on the antibody and scoring system employed. There was no difference in PD-L1 expression based on histological or clinical subtypes. Based on PD-L1 expression, immune checkpoint inhibitors could afford an effective treatment strategy in CUP.
Autres résumés
Type: Publisher
(ger)
Carcinoma of unknown primary (CUP) refers to a heterogeneous collection of cancers where metastatic growth is observed, but the origin of the primary tumor remains unidentified. The type of primary cancer is critical for establishing the treatment strategy in metastatic carcinoma, presenting a considerable challenge in CUP. Patients with programmed death-ligand 1 (PD-L1)–positive tumors are well-known to benefit from targeted therapy against PD-L1. However, the expression of PD-L1 in CUP remains poorly explored. The present study demonstrated that PD-L1 was expressed in CUP with varying positivity rates depending on the antibody and scoring system employed. There was no difference in PD-L1 expression based on histological or clinical subtypes. Based on PD-L1 expression, immune checkpoint inhibitors could afford an effective treatment strategy in CUP.
Identifiants
pubmed: 38844907
doi: 10.1186/s12885-024-12437-w
pii: 10.1186/s12885-024-12437-w
doi:
Substances chimiques
B7-H1 Antigen
0
CD274 protein, human
0
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
689Informations de copyright
© 2024. The Author(s).
Références
Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Crit Rev Oncol Hematol. 2005;54:243–50.
pubmed: 15890271
doi: 10.1016/j.critrevonc.2004.10.002
Haskell CM, Cochran AJ, Barsky SH, Steckel RJ. Metastasis of unknown origin. Curr Probl Cancer. 1988;12:5–58.
pubmed: 3067982
doi: 10.1016/S0147-0272(88)80007-2
Krementz ET, Cerise EJ, Foster DS, Morgan LR Jr. Metastases of undetermined source. Curr Probl Cancer. 1979;4:4–37.
pubmed: 391494
doi: 10.1016/S0147-0272(79)80019-7
Lembersky BC, Thomas LC. Metastases of unknown primary site. Med Clin North Am. 1996;80:153–71.
pubmed: 8569295
doi: 10.1016/S0025-7125(05)70433-8
Rassy E, Pavlidis N. The currently declining incidence of cancer of unknown primary. Cancer Epidemiol. 2019;61:139–41.
pubmed: 31254795
doi: 10.1016/j.canep.2019.06.006
van de Wouw AJ, Jansen RL, Speel EJ, Hillen HF. The unknown biology of the unknown primary tumour: a literature review. Ann Oncol. 2003;14:191–6.
pubmed: 12562643
doi: 10.1093/annonc/mdg068
Olivier T, Fernandez E, Labidi-Galy I, Dietrich PY, Rodriguez-Bravo V, Baciarello G, Fizazi K, Patrikidou A. Redefining cancer of unknown primary: is precision medicine really shifting the paradigm? Cancer Treat Rev. 2021;97:102204.
pubmed: 33866225
doi: 10.1016/j.ctrv.2021.102204
Bochtler T, Löffler H, Krämer A. Diagnosis and management of metastatic neoplasms with unknown primary. Semin Diagn Pathol. 2018;35:199–206.
pubmed: 29203116
doi: 10.1053/j.semdp.2017.11.013
Kato S, Alsafar A, Walavalkar V, Hainsworth J, Kurzrock R. Cancer of unknown primary in the Molecular Era. Trends Cancer. 2021;7:465–77.
pubmed: 33516660
pmcid: 8062281
doi: 10.1016/j.trecan.2020.11.002
Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203:883–95.
pubmed: 16606670
pmcid: 2118286
doi: 10.1084/jem.20051776
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.
pubmed: 12091876
doi: 10.1038/nm730
Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170:1257–66.
pubmed: 12538684
doi: 10.4049/jimmunol.170.3.1257
D’Incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, Tibaldi C, Minuti G, Salvini J, Coppi E, Chella A, Fontanini G, Filice ME, Tornillo L, Incensati RM, Sani S, Crino L, Terracciano L, Cappuzzo F. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 2015;112:95–102.
pubmed: 25349974
doi: 10.1038/bjc.2014.555
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.
pubmed: 25428504
pmcid: 4836193
doi: 10.1038/nature14011
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.
pubmed: 25891174
doi: 10.1056/NEJMoa1501824
Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10:5094–100.
pubmed: 15297412
doi: 10.1158/1078-0432.CCR-04-0428
Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.
pubmed: 25428503
doi: 10.1038/nature13904
Thierauf J, Veit JA, Affolter A, Bergmann C, Grunow J, Laban S, Lennerz JK, Grunmuller L, Mauch C, Plinkert PK, Hess J, Hoffmann TK. Identification and clinical relevance of PD-L1 expression in primary mucosal malignant melanoma of the head and neck. Melanoma Res. 2015;25:503–9.
pubmed: 26352784
doi: 10.1097/CMR.0000000000000197
Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104:3360–5.
pubmed: 17360651
pmcid: 1805580
doi: 10.1073/pnas.0611533104
Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci. 2020;247:117437.
pubmed: 32070710
doi: 10.1016/j.lfs.2020.117437
Li CJ, Lin LT, Hou MF, Chu PY. PD–L1/PD–1 blockade in breast cancer: the immunotherapy era (review). Oncol Rep. 2021;45:5–12.
pubmed: 33416128
doi: 10.3892/or.2020.7831
Chen K, Wang X, Yang L, Chen Z. The Anti-PD-1/PD-L1 immunotherapy for gastric esophageal Cancer: a systematic review and Meta-analysis and literature review. Cancer Control. 2021;28:1073274821997430.
pubmed: 33618535
pmcid: 8482723
doi: 10.1177/1073274821997430
Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, Zhong X, Li X, Qian H, Wang X. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS ONE. 2017;12:e0182692.
pubmed: 28796808
pmcid: 5552131
doi: 10.1371/journal.pone.0182692
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS, Hirsch FR. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62.
pubmed: 33580222
doi: 10.1038/s41571-021-00473-5
Bagchi S, Yuan R, Engleman EG. Immune Checkpoint inhibitors for the treatment of Cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.
pubmed: 33197221
doi: 10.1146/annurev-pathol-042020-042741
Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, Kroeger J, Eysmans C, Sarnaik AA, Chen YA. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31:4311–8.
pubmed: 24145345
pmcid: 3837092
doi: 10.1200/JCO.2013.51.4802
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.
pubmed: 25428505
pmcid: 4246418
doi: 10.1038/nature13954
Chauhan A, Siegel L, Freese R, Racila E, Stewart J 3rd, Amin K. Performance of Ventana SP263 PD-L1 assay in endobronchial ultrasound guided-fine-needle aspiration derived non-small-cell lung carcinoma samples. Diagn Cytopathol. 2021;49:355–62.
pubmed: 33142053
doi: 10.1002/dc.24654
Pavlidis N, Pentheroudakis G. Cancer of unknown primary site. Lancet. 2012;379:1428–35.
pubmed: 22414598
doi: 10.1016/S0140-6736(11)61178-1
Fizazi K, Greco FA, Pavlidis N, Daugaard G, Oien K, Pentheroudakis G. Cancers of unknown primary site: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v133–138.
pubmed: 26314775
doi: 10.1093/annonc/mdv305
Choi SH, Chang JS, Koo JS, Park JW, Sohn JH, Keum KC, Suh CO, Kim YB. Differential Prognostic Impact of strong PD-L1 expression and 18F-FDG uptake in Triple-negative breast Cancer. Am J Clin Oncol. 2018;41:1049–57.
pubmed: 29419531
doi: 10.1097/COC.0000000000000426
Kim HM, Lee J, Koo JS. Clinicopathological and prognostic significance of programmed death ligand-1 expression in breast cancer: a meta-analysis. BMC Cancer. 2017;17:690.
pubmed: 29041905
pmcid: 5645886
doi: 10.1186/s12885-017-3670-1
Sun WY, Lee YK, Koo JS. Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies. J Transl Med. 2016;14:173.
pubmed: 27286842
pmcid: 4902914
doi: 10.1186/s12967-016-0925-6
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR. Pembrolizumab versus Chemotherapy for PD-L1-Positive non-small-cell Lung Cancer. N Engl J Med. 2016;375:1823–33.
pubmed: 27718847
doi: 10.1056/NEJMoa1606774
Balar AV, Castellano D, O’Donnell PH, Grivas P, Vuky J, Powles T, Plimack ER, Hahn NM, de Wit R, Pang L, Savage MJ, Perini RF, Keefe SM, Bajorin D, Bellmunt J. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:1483–92.
pubmed: 28967485
doi: 10.1016/S1470-2045(17)30616-2
Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A. Atezolizumab versus Docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.
pubmed: 26970723
doi: 10.1016/S0140-6736(16)00587-0
García A, Recondo G, Greco M, de la Vega M, Perazzo F, Recondo G, Avagnina A, Denninghoff V. Correlation between PD-L1 expression (clones 28 – 8 and SP263) and histopathology in lung adenocarcinoma. Heliyon. 2020;6:e04117.
pubmed: 32514486
pmcid: 7267734
doi: 10.1016/j.heliyon.2020.e04117
Tot T. The value of cytokeratins 20 and 7 in discriminating metastatic adenocarcinomas from pleural mesotheliomas. Cancer. 2001;92:2727–32.
pubmed: 11745209
doi: 10.1002/1097-0142(20011115)92:10<2727::AID-CNCR1627>3.0.CO;2-B
Huang X, Ding Q, Guo H, Gong Y, Zhao J, Zhao M, Sui D, Wu Y, Chen H, Liu H, Zhang J, Resetkova E, Moulder SL, Wang WL, Huo L. Comparison of three FDA-approved diagnostic immunohistochemistry assays of PD-L1 in triple-negative breast carcinoma. Hum Pathol. 2021;108:42–50.
pubmed: 33221342
doi: 10.1016/j.humpath.2020.11.004
Gatalica Z, Xiu J, Swensen J, Vranic S. Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy. Eur J Cancer. 2018;94:179–86.
pubmed: 29571084
doi: 10.1016/j.ejca.2018.02.021
Ross JS, Sokol ES, Moch H, Mileshkin L, Baciarello G, Losa F, Beringer A, Thomas M, Elvin JA, Ngo N, Jin DX, Krämer A. Comprehensive genomic profiling of Carcinoma of unknown primary origin: retrospective molecular classification considering the CUPISCO Study Design. Oncologist. 2021;26:e394–402.
pubmed: 33219618
doi: 10.1002/onco.13597
Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR. PD-L1 expression in Lung Cancer. J Thorac Oncol. 2016;11:964–75.
pubmed: 27117833
pmcid: 5353357
doi: 10.1016/j.jtho.2016.04.014
Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, Torres-Martínez S, García González C, García García J. Iranzo González-Cruz V, Camps Herrero C: programmed death-ligand 1 (PD-L1) as immunotherapy biomarker in breast Cancer. Cancers (Basel) 2022, 14.
Carretero-González A, Lora D, Martín Sobrino I, Sáez Sanz I, Bourlon MT, Anido Herranz U, Martínez Chanzá N, Castellano D, de Velasco G. The value of PD-L1 expression as predictive biomarker in metastatic renal cell Carcinoma patients: a Meta-analysis of Randomized clinical trials. Cancers (Basel) 2020, 12.
Zhou TC, Sankin AI, Porcelli SA, Perlin DS, Schoenberg MP, Zang X. A review of the PD-1/PD-L1 checkpoint in bladder cancer: from mediator of immune escape to target for treatment. Urol Oncol. 2017;35:14–20.
pubmed: 27816403
doi: 10.1016/j.urolonc.2016.10.004
Chan AWH, Tong JHM, Kwan JSH, Chow C, Chung LY, Chau SL, Lung RWM, Ng CSH, Wan IYP, Mok TSK, To KF. Assessment of programmed cell death ligand-1 expression by 4 diagnostic assays and its clinicopathological correlation in a large cohort of surgical resected non-small cell lung carcinoma. Mod Pathol. 2018;31:1381–90.
pubmed: 29713040
doi: 10.1038/s41379-018-0053-3
Kim HR, Ha SJ, Hong MH, Heo SJ, Koh YW, Choi EC, Kim EK, Pyo KH, Jung I, Seo D, Choi J, Cho BC, Yoon SO. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep. 2016;6:36956.
pubmed: 27841362
pmcid: 5107906
doi: 10.1038/srep36956
Mocan LP, Craciun R, Grapa C, Melincovici CS, Rusu I, Al Hajjar N, Sparchez Z, Leucuta D, Ilies M, Sparchez M, Mocan T, Mihu CM. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for patients with intrahepatic cholangiocarcinoma. Cancer Immunol Immunother 2022.
Wen Y, Chen Y, Duan X, Zhu W, Cai C, Deng T, Zeng G. The clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis. Clin Exp Med. 2019;19:407–16.
pubmed: 31407099
doi: 10.1007/s10238-019-00572-9
Zhong Q, Shou J, Ying J, Ling Y, Yu Y, Shen Z, Zhang Y, Li N, Shi Y, Zhou A. High PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor in urothelial carcinoma. Future Oncol. 2021;17:2893–905.
pubmed: 34189951
doi: 10.2217/fon-2021-0092
Han SJ, Reis G, Kohanbash G, Shrivastav S, Magill ST, Molinaro AM, McDermott MW, Theodosopoulos PV, Aghi MK, Berger MS, Butowski NA, Barani I, Phillips JJ, Perry A, Okada H. Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J Neurooncol. 2016;130:543–52.
pubmed: 27624915
pmcid: 5560602
doi: 10.1007/s11060-016-2256-0
Melotti S, Ambrosi F, Franceschini T, Giunchi F, Filippo GD, Franchini E, Massari F, Mollica V, Tateo V, Bianchi FM, Colecchia M, Acosta AM, Lobo J, Fiorentino M, Ricci C. TAMs PD-L1(+) in the reprogramming of germ cell tumors of the testis. Pathol Res Pract. 2023;247:154540.
pubmed: 37209574
doi: 10.1016/j.prp.2023.154540
de Jong JJ, Stoop H, Nieboer D, Boormans JL, van Leenders G. Concordance of PD-L1 expression in matched urothelial bladder cancer specimens. Histopathology. 2018;73:983–9.
pubmed: 30003574
doi: 10.1111/his.13710
Gradecki SE, Grange JS, Stelow EB. Concordance of PD-L1 expression between core biopsy and resection specimens of Non-small Cell Lung Cancer. Am J Surg Pathol. 2018;42:1090–4.
pubmed: 29794870
doi: 10.1097/PAS.0000000000001085
Kim SW, Jeong G, Ryu MH, Park YS. Comparison of PD-L1 immunohistochemical assays in advanced gastric adenocarcinomas using endoscopic biopsy and paired resected specimens. Pathology. 2021;53:586–94.
pubmed: 33546812
doi: 10.1016/j.pathol.2020.10.015
Zhao L, Chen P, Fu K, Li J, Dai Y, Wang Y, Zhuang Y, Sun L, Chen H, Lin Q. Concordance of PD-L1 status between image-guided percutaneous biopsies and Matched Surgical Specimen in Non-small Cell Lung Cancer. Front Oncol. 2020;10:551367.
pubmed: 33708615
doi: 10.3389/fonc.2020.551367
Ambrosi F, Giunchi F, Capizzi E, Cancellieri A, Trisolini R, Ardizzoni A, Fiorentino M, Ricci C. Interobserver agreement of PD-L1 (SP263) assessment in advanced NSCLC on cytological smears and histological samples. Pathol Res Pract. 2022;233:153893.
pubmed: 35429890
doi: 10.1016/j.prp.2022.153893
Gagné A, Orain M, Ionescu D, Tsao MS, Joubert D, Joubert P. Comprehensive assessment of PD-L1 immunohistochemistry on paired tissue and cytology specimens from non-small cell lung cancer. Lung Cancer. 2020;146:276–84.
pubmed: 32593917
doi: 10.1016/j.lungcan.2020.06.002
Tejerina E, Garca Tobar L, Echeveste JI, de Andrea CE, Vigliar E, Lozano MD. PD-L1 in Cytological samples: a review and a practical Approach. Front Med (Lausanne). 2021;8:668612.
pubmed: 34026795
doi: 10.3389/fmed.2021.668612