Investigate the biological activities of Lawsonia inermis extract synthesized from TiO

antibacterial activities graphene oxide green chemistry methyl orange microscopy studies titanium oxide zebrafish husbandry

Journal

Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012

Informations de publication

Date de publication:
06 Jun 2024
Historique:
revised: 18 05 2024
received: 25 04 2024
accepted: 27 05 2024
medline: 7 6 2024
pubmed: 7 6 2024
entrez: 7 6 2024
Statut: aheadofprint

Résumé

Nanoparticles of titanium dioxide (TiO

Identifiants

pubmed: 38845108
doi: 10.1002/jemt.24625
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Author(s). Microscopy Research and Technique published by Wiley Periodicals LLC.

Références

Abdul Jalill, R. D. H., Nuaman, R. S., & Abd, A. N. (2016). Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Scientific News, 49, 204–222.
Ajmal, N., Saraswat, K., Bakht, M. A., Riadi, Y., Ahsan, M. J., & Noushad, M. (2019). Cost‐effective and eco‐friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit's peel agro‐waste extracts: Characterization, in vitro anti‐bacterial, antioxidant activities. Green Chemistry Letters and Reviews, 12(3), 244–254.
Anbalagan, K., Mohanraj, S., & Pugalenthi, V. (2015). Rapid phytosynthesis of nano‐sized titanium using leaf extract of Azadirachta indica. International Journal of ChemTech Research, 8, 2047–2052.
Ashkarran, A. A. (2011). Antibacterial properties of silver doped TiO2 nanoparticles under solar simulated light. Journal of Theoretical and Applied Physics (Iranian Physical Journal), 4, 1–8.
Bar‐Ilan, O., Louis, K. M., Yang, S. P., Pedersen, J. A., Hamers, R. J., Peterson, R. E., & Heideman, W. (2012). Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology, 6, 670–679.
Bjork, J., Hanke, F., Palma, C. A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of aromatic and anti‐aromatic systems on graphene through π−π stacking. Journal of Physical Chemistry Letters, 1, 3407–3412.
Bouamrane, A., Nounah, A., Laanab, L., & Ait‐Ichou, Y. (2006). Preparation of TiO, photocatalyst using TiCl, as a precursor and its photocatalytic performance. Journal of Applied Sciences, 6(7), 1553–1559.
Centi, G., Ciambelli, P., Perathoner, S., & Russo, P. (2002). Environmental catalysis: Trends and outlook. Catalysis Today, 75, 3–15.
Chandramohan, S., Sundar, K., & Muthukumaran, A. (2018). Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos. Materials Research Express, 5, 025020.
Chandramohan, S., Sundar, K., & Muthukumaran, A. (2019). Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos. IET Nanobiotechnology, 13, 275–281.
Chandrasekar, M., Panimalar, S., Uthrakumar, R., Kumar, M., Raja Saravanan, M. E., Gobi, G., & Madheswaran, P. (2021). Preparation and characterization studies of pure and Li+ doped ZnO nanoparticles for optoelectronic applications. Materials Today: Proceedings, 36, 228–231.
Chandrasekar, M., Subash, M., Logambal, S., Udhayakumar, G., Uthrakumar, R., Inmozhi, C., Al‐Onazi, W. A., Al‐Mohaimeed, A. M., Chen, T.‐W., & Kanimozhi, K. (2022). Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method. Journal of King Saud University‐Science, 34, 101831.
Chandrasekar, M., Subash, M., Perumal, V., Panimalar, S., Aravindan, S., Uthrakumar, R., Inmozhi, C., Isaev, A. B., Sudhakar Muniyasamy, A., & Raja, K. K. (2022). Specific charge separation of Sn doped MgO nanoparticles for photocatalytic activity under UV light irradiation. Separation and Purification Technology, 294, 121189.
Charoensup, R., Duangyod, T., Palanuvej, C., & Ruangrungsi, N. (2017). Pharmacognostic specifications and Lawsone content of Lawsonia inermis leaves. Pharmacognosy Research, 9(1), 60–64.
Cipta Dharma, H. N., Jaafar, J., Widiastuti, N., Matsuyama, H., Rajabsadeh, S., Dzarfan Othman, M. H., Rahman, M. A., Mohammad Jafri, N. N., Suhaimin, N. S., Nasir, A. M., & Alias, N. H. (2022). A review of titanium dioxide (TiO2) based photocatalyst for oilfield produced water treatment. Membranes, 12(3), 345.
Da Silva, G. H., Clemente, Z., Khan, L. U., Coa, F., Neto, L. L. R., Carvalho, H. W. P., Castro, V. L., Diego, S. T., & Martinez, R. T. R. M. (2018). Toxicity assessment of TiO2‐MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (zebra fish) embryos. Ecotoxicology and Environmental Safety, 165, 136–143.
Ellouzi, I., El Hajjaji, S., Harir, M., Koplin, P. S., Robert, D., & Laanab, L. (2019). Synergistic effects of C, N, S, Fe‐multidoped TiO2 for photocatalytic degradation of methyl orange dye under UV and visible light irradiations. Applied Sciences, 1, 930.
Esmail Al‐Snafi, A. (2019). A review on lawsonia inermis: A potential medicinal plant. International Journal of Current Pharmaceutical Research, 11(5), 1–13.
Fu, J., Guo, Y., Yang, L., Han, J., & Zhou, B. (2020). Nano‐TiO2 enhanced bioaccumulation and developmental neurotoxicity of bisphenol a in zebra fish larvae. Environmental Research, 187, 109682.
Gebel, J., Exner, M., French, G., Chartier, Y., Christiansen, B., Gemein, S., Bermes, P. G., Hartemann, P., Heudorf, U., Kramer, A., Maillard, J. Y., Oltmanns, P., Rotter, M., & Sonntag, H. G. (2013). The role of surface disinfection in infection prevention. GMS Hygiene and Infection Control, 8(1), 1–10.
Geetha, N., Sivaranjani, S., Ayeshamariam, A., & Siva Bharathy, M. (2018). High performance photo‐catalyst based on nanosized ZnO‐TiO2 nanoplatelets for removal of RhB under visible light irradiation. Journal of Advanced Microscopy Research, 13(1), 12–19.
Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132–140.
Ghazy, O. A., Fouad, M. T., Morsy, T. A., & Kholif, A. E. (2023). Nanoemulsion formulation of Lawsonia inermis extract and its potential antimicrobial and preservative efficacy against foodborne pathogens. Food Control, 145, 109458.
Gull, I., Sohail, M., Shahbaz Aslam, M., & Amin Athar, M. (2013). Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria. Annals of Clinical Microbiology and Antimicrobials, 12, 36.
Gunasekaran, A., Rajamani, A., Masilamani, C., & Chinnappan, I. (2023). Synthesis and characterization of ZnO doped TiO2 nanocomposites for their potential photocatalytic and antimicrobial applications. Catalysts, 13(2), 215.
Gupta, G. S., Kansara, K., Shah, H., Rathod, R., Valecha, D., Gogisetty, S., Joshia, P., & Kumar, A. (2019). Impact of humic acid on the fate and toxicity of titanium dioxide nanoparticles in Tetrahymena pyriformis and zebra fish embryos. Nanoscale Advances, 1, 219–227.
Gurr, J. R., Wang, A. S., Chen, C. H., & Jan, K. Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66–73.
Holban, A. M., Gestal, M. C., & Grumezescu, A. M. (2016). Control of biofilm‐associated infections by signaling molecules and nanoparticles. International Journal of Pharmaceutics, 510, 409–418.
Jalvo, B., Faraldos, M., Bahamonde, A., & Rosal, R. (2017). Antimicrobial and antibiofilm efficacy of self‐cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. Journal of Hazardous Materials, 340, 160–170.
Janani, M., Gomathi, T., & Babujanarthanam, R. (2023). An evaluation of the biological activity of zinc oxide nanoparticles fabricated from aqueous bark extracts of Acacia nilotica. Journal of King Saud University–Science, 35, 102753.
Jayaseelan, C., Rahuman, A. A., Roopan, S. M., Kirthi, A. V., Venkatesan, J., Kim, S. K., Iyappan, M., & Siva, C. (2013). Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 82–89.
Jeyabharathi, S., Mahalakshmi, R., Chandramohan, S., Naveenkumar, S., Sundar, K., & Muthukumaran, A. (2020). Self‐assembled hollow ZnO nano and micro donut shape by starch and its anti‐microbial potentials. Materials Letters, 275, 128128.
Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver carbon composite materials for optically functional thin‐film coatings. Advanced Materials, 12, 407–409.
Joy Prabu, H., Varghese, R., Johnson, I., John Sundaram, S., Dhayal Raj, A., Rajagopal, R., & Kuppusamy, P. (2022). Laser induced plant leaf extract mediated synthesis of CuO nanoparticles and its photocatalytic activity. Environmental Research, 212, 113295.
Kannahi, M., & Vinotha, K. (2013). Antimicrobial activity of Lawsonia inermis leaf extracts against some human pathogens. International Journal of Current Microbiology and Applied Sciences, 2(5), 342–349.
Kansara, K., Kumar, A., & Karakoti, A. S. (2020). Combination of humic acid and clay reduce the ecotoxic effect of TiO2 NPs: A combined physico‐chemical and genetic study using zebrafish embryo. Science of the Total Environment, 698, 134133.
Karygianni, L., Al‐Ahmad, A., Argyropoulou, A., Hellwig, E., Anderson, A. C., & Skaltsounis, A. L. (2016). Natural antimicrobials and oral microorganisms: A systematic review on herbal interventions for the eradication of multispecies oral. Biofilms, 6, 1529.
Kasinathan, K., Kennedy, J., Elayaperumal, M., Henini, M., & Malik, M. (2016). Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Scientific Reports, 6(1), 38064.
Khan, S. U., Al‐Shahry, M., & Ingler, W. B. (2002). Efficient photochemical water splitting by a chemically modified n‐TiO2. Science, 297, 2243–2245.
Kumar, S., Hussain, A., Bhushan, B., & Kaul, G. (2020). Comparative toxicity assessment of nano‐ and bulk‐phase titanium dioxide particles on the human mammary gland in vitro. Human & Experimental Toxicology, 39, 1475–1486.
Levine, K. E., Fernando, R. A., Lang, M., Essader, A., & Wong, B. A. (2003). Development and validation of a high throughput method for the determination of titanium dioxide in rodent lung and lung‐associated lymph node tissues. Analytical Letters, 36, 563–576.
Li, M., Wu, Q., Wang, Q., Xiang, D., & Zhu, G. (2018). Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebra fish larvae. Aquatic Toxicology, 199, 212–219.
Logambal, S., Maheswari, C., Chandrasekar, M., Thilagavathi, T., Inmozhi, C., Panimalar, S., Bassyouni, F. A., Uthrakumar, R., Gawwad, M. R. A., Aljowaie, R. M., Al, D. A., & Farraj, K. K. (2022). Synthesis and characterizations of CuO nanoparticles using Couroupita guianensis extract for and anti‐microbial applications. Journal of King Saud University‐Science, 34, 101910.
Luiza, R., & de Brito‐gitirana, L. (2020). Effects of titanium dioxide nanoparticles on the intestine liver and kidney of Danio rerio. Ecotoxicology and Environmental Safety, 203, 111032.
Magdalane, C. M., Priyadharsini, G. M. A., Kaviyarasu, K., Jothi, A. I., & Simiyon, G. G. (2021). Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of Congo red degradation dye. Surfaces and Interfaces, 25, 101296.
Mahshid, S., Askari, M., & Ghamsari, M. S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology, 189, 296–300.
Mani, M., Harikrishnan, R., Purushothaman, P., Pavithra, S., Rajkumar, P., Kumaresan, S., Al, D. A., & Farraj, M. S. E. (2021). Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environmental Research, 202, 111627.
Mani, M., Okla, M. K., Selvaraj, S., Ram Kumar, A., Kumaresan, S., Azhaguchamy Muthukumaran, B., Elbadawi, K. S., Almaary, B. M., Almunqedhi, A., & Elshikhb, M. S. (2021). A novel biogenic Allium cepa leaf mediated silver nanoparticles for anti‐microbial, antioxidant, and anticancer effects on MCF‐7 cell line. Environmental Research, 198, 111199.
Manuja, A., Rathore, N., Choudhary, S., & Kumar, B. (2021). Phytochemical screening, cytotoxicity and anti‐inflammatory activities of the leaf extracts from Lawsonia inermis of Indian origin to explore their potential for medicinal uses. Medicinal Chemistry, 17(6), 76–586.
Mathew, S., Prasad, A. K., Benoy, T., Rakesh, P. P., Hari, M., Libish, T. M., Radhakrishnan, P., Nampoori, V. P., & Vallabhan, C. P. (2012). UV‐visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. Journal of Fluorescence, 22, 1563–1569.
Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.
Moutawalli, A., Zahra Benkhouili, F., Doukkali, A., Benzeid, H., & Zahidi, A. (2023). The biological and pharmacologic actions of Lawsonia inermis L. Phytomedicine Plus, 3(3), 100468.
Nabilah, F., Supian, A., & Izzati Osman, N. (2023). Phytochemical and pharmacological activities of natural dye plant, Lawsonia inermis L (Henna). Journal of Young Pharmacists, 15(2), 201–211.
Naveenkumar, S., Chandramohan, S., & Muthukumaran, A. (2021). A novel synthesis of zinc oxide nanoparticles using various carbohydrate sources and its anti‐microbial effects. Materials Today: Proceedings, 36, 520–525.
Orudzhev, F., Ramazanov, S., Sobola, D., Isaev, A., Wang, C., Magomedova, A., Kadiev, M., & Kasinathan, K. (2020). Atomic layer deposition of mixed‐layered Aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials, 10(11), 2183.
Parasuraman, P., Antony, A. P., Sharan, A., Siddhardha, B., Kasinathan, K., Bahkali, N. A., Dawoud, T. M. S., & Syed, A. (2019). Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling, 35(1), 89–103.
Pirkanniemi, K., & Sillanpaa, M. (2002). Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere, 48, 1047–1060.
Ramesh, R., Vidhya, V., Khan, F. L. A., Alnasrawi, A. M., Alkahtani, J., Elshikh, M. S., & Kaviyarasu, K. (2022). Shockwave treated seed germination and physiological growth of Vigna mungo (L) in red soil environment. Physiological and Molecular Plant Pathology, 117, 101747.
Renuka, R., Renuka Devi, K., Sivakami, M., & Thilagavathi, T. (2020). Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application, biocatalysis and agricultural. Biotechnology, 24, 101567.
Said, A., Abu‐Elghait, M., Atta, H. M., & Salem, S. S. (2023). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract. Infection, 11, 22–37.
Sankar, R., Rizwana, K., Shivashangari, K. S., & Ravikumar, V. (2015). Ultra‐rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Applied Nanoscience, 5, 731–736.
Sathiyaraj, S., Suriyakala, G., Dhanesh Gandhi, A., Babujanarthanam, R., & Almaary, K. S. (2021). Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. Journal of Infection and Public Health, 14, 1842–1847.
Smail Nounah, S., Hajib, A., Harhar, H., El, N., Madani, S., Gharby, D., & Guillaume, Z. C. (2017). Chemical composition and antioxidant activity of Lawsonia inermis seed extracts from Morocco. Natural Product Communications, 12(4), 487–488.
Tolles, W. M., & Rath, B. B. (2003). Nanotechnology, a stimulus for innovation. Current Science, 85, 1746–1759.
Valsalam, S., Agastian, P., Valan Arasu, M., Abdullah Al‐Dhabi, N., Mohammed Ghilan, A. K., Kaviyarasu, K., Ravindran, B., Woong Chang, S., & Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in‐vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65–74.
Wang, Q., Chen, Q., Zhou, P., Li, W., Wang, J., Huang, C., Wang, X., Lin, K., & Zhou, B. (2014). Bioconcentration and metabolism of BDE‐209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology, 8, 196–207.
Wang, X., Xu, H., & Zhang, L. (2008). Selective preparation of nanorods and micro‐octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technology, 185, 176–180.
Wu, Q., Yan, W., Liu, C., Hung, T., & Li, G. (2018). Parental transfer of titanium dioxide nanoparticle aggravated MCLR‐induced developmental toxicity in zebrafish offspring. Environmental Science: Nano, 5, 2952–2965.
Yeon Yang, J., & Seon Lee, H. (2015). Antimicrobial activities of active component isolated from Lawsonia inermis leaves and structure‐activity relationships of its analogues against food‐borne bacteria. Journal of Food Science and Technology, 52(4), 2446–2451.
Yousaf, S., Kousar, T., Taj, M. B., Agboola, P. O., Shakir, I., & Warsi, M. F. (2019). Synthesis and characterization of double heterojunction‐graphene nano‐hybrids for photocatalytic applications. Ceramics International, 45, 17806–17817.

Auteurs

K Kaviyarasu (K)

UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Johannesburg, South Africa.

Classifications MeSH