Bayliss Starling Prize Lecture 2023: Neuropeptide-Y being 'unsympathetic' to the broken hearted.
arrhythmia
autonomic nervous system
coronary microvascular function
heart failure
neuropeptide Y
sympathetic nervous system
ventricular fibrillation
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
07 Jun 2024
07 Jun 2024
Historique:
received:
05
03
2024
accepted:
01
05
2024
medline:
7
6
2024
pubmed:
7
6
2024
entrez:
7
6
2024
Statut:
aheadofprint
Résumé
William Bayliss and Ernest Starling are not only famous as pioneers in cardiovascular physiology, but also responsible for the discovery of the first hormone (from the Greek 'excite or arouse'), the intestinal signalling molecule and neuropeptide secretin in 1902. Our research group focuses on neuropeptides and neuromodulators that influence cardiovascular autonomic control as potential biomarkers in disease and tractable targets for therapeutic intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator. Although beta-blockers improve mortality in these conditions by preventing the action of the neurotransmitter noradrenaline, a substantial residual risk remains. Recently, we have identified the sympathetic co-transmitter neuropeptide-Y (NPY) as being released during AMI, leading to larger infarcts and life-threatening arrhythmia in both animal models and patients. Here, we discuss recently published data demonstrating that peripheral venous NPY levels are associated with heart failure hospitalisation and mortality after AMI, and all cause cardiovascular mortality in CHF, even when adjusting for known risk factors (including brain natriuretic peptide). We have investigated the mechanistic basis for these observations in human and rat stellate ganglia and cardiac tissue, manipulating NPY neurochemistry at the same time as using state-of-the-art imaging techniques, to establish the receptor pathways responsible for NPY signalling. We propose NPY as a new mechanistic biomarker in AMI and CHF patients and aim to determine whether specific NPY receptor blockers can prevent arrhythmia and attenuate the development of heart failure.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : British Heart Foundation (BHF)
ID : FS/CRTF/22/24437
Organisme : British Heart Foundation (BHF)
ID : FS/SCRF/20/32005
Informations de copyright
© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Ajijola, O. A., Chatterjee, N. A., Gonzales, M. J., Gornbein, J., Liu, K., Li, D., Paterson, D. J., Shivkumar, K., Singh, J. P., & Herring, N. (2020). Coronary sinus neuropeptide Y levels and adverse outcomes in patients with stable chronic heart failure. Journal of the American Medical Association Cardiology, 5(3), 318–325.
Ajijola, O. A., Hoover, D. B., Simerly, T. M., Brown, T. C., Yanagawa, J., Biniwale, R. M., Lee, J. M., Sadeghi, A., Khanlou, N., Ardell, J. L., & Shivkumar, K. (2017). Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. Joint Commission International Insight, 2(18), e94715.
Ajijola, O. A., Yagishita, D., Reddy, N. K., Yamakawa, K., Vaseghi, M., Downs, A. M., Hoover, D. B., Ardell, J. L., & Shivkumar, K. (2015). Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes. Heart Rhythm, 12(5), 1027–1035.
Allen, A. R., Kelso, E. J., Bell, D., Zhao, Y., Dickson, P., & McDermott, B. J. (2006). Modulation of contractile function through neuropeptide Y receptors during development of cardiomyocyte hypertrophy. Journal of Pharmacology and Experimental Therapeutics, 319(3), 1286–1296.
Arai, T., Kanazawa, H., Kimura, K., Munakata, M., Yamakawa, H., Shinmura, K., Yuasa, S., Sano, M., & Fukuda, K. (2022). Upregulation of neuropeptide Y in cardiac sympathetic nerves induces stress (Takotsubo) cardiomyopathy. Frontiers in Neuroscience, 16, 1013712.
Ardell, J. L., & Armour, J. A. (2016). Neurocardiology: Structure‐based function. Comprehensive Physiology, 6(4), 1635–1653.
Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton‐Cheh, C., Ikeda, M., West, K., Kashuk, C., Akyol, M., Perz, S., Jalilzadeh, S., Illig, T., Gieger, C., Guo, C. Y., Larson, M. G., Wichmann, H. E., Marban, E., O'Donnell, C. J., Hirschhorn, J. N., … Chakravarti, A. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38(6), 644–651.
Armaganijan, L. V., Staico, R., Moreira, D. A., Lopes, R. D., Medeiros, P. T., Habib, R., Melo Neto, J., Katz, M., Armaganijan, D., & Sousa, A. G. (2015). 6‐month outcomes in patients with implantable cardioverter‐defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. Journal of the American College of Cardiology: Cardiovascular Interventions, 8(7), 984–990.
Armour, J. A. (2004). Cardiac neuronal hierarchy in health and disease. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 287(2), R262–R271.
Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’on the mammalian heart. Experimental Physiology, 93(2), 165–176.
Armour, J. A., Murphy, D. A., Yuan, B. X., MacDonald, S., & Hopkins, D. A. (1997). Gross and microscopic anatomy of the human intrinsic cardiac nervous system. The Anatomical Record: An Official Publication of the American Association of Anatomists, 247(2), 289–298.
Azizi, M., Saxena, M., Wang, Y., Jenkins, J. S., Devireddy, C., Rader, F., Fisher, N. D. L., Schmieder, R. E., Mahfoud, F., Lindsey, J., Sanghvi, K., Todoran, T. M., Pacella, J., Flack, J., Daemen, J., Sharp, A. S. P., Lurz, P., Bloch, M. J., Weber, M. A., … RADIANCE II Investigators and Collaborators. (2023). Endovascular ultrasound renal denervation to treat hypertension: The RADIANCE II randomized clinical trial. Journal of the American Medical Association, 329(8), 651–661.
Azizi, M., Sharp, A. S. P., Fisher, N. D. L., Weber, M. A., Lobo, M. D., Daemen, J., Lurz, P., Mahfoud, F., Schmieder, R. E., Basile, J., Bloch, M. J., Saxena, M., Wang, Y., Sanghvi, K., Jenkins, J. S., Devireddy, C., Rader, F., Gosse, P., … Claude, L., RADIANCE Investigators. (2024). Patient‐level pooled analysis of endovascular ultrasound renal denervation or a sham procedure at 6 months following medication escalation: The RADIANCE clinical trial program. Circulation, 149(10), 747–759.
Barber, M. J., Mueller, T. M., Henry, D. P., Felten, S., & Zipes, D. (1983). Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation, 67(4), 787–796.
Bardy, G. H., Lee, K. L., Mark, D. B., Poole, J. E., Packer, D. L., Boineau, R., Domanski, M., Troutman, C., Anderson, J., Johnson, G., McNulty, S. E., Clapp‐Channing, N., Davidson‐Ray, L. D., Fraulo, E. S., Fishbein, D. P., Luceri, R. M., Ip, J. H., & Sudden Cardiac Death in Heart Failure Trial (SCD‐HeFT). (2005). Amiodarone or an implantable cardioverter‐defibrillator for congestive heart failure. New England Journal of Medicine, 352(3), 225–237.
Bayliss, W. M. (1902). On the local reactions of the arterial wall to changes of internal pressure. The Journal of physiology, 28(3), 220–231.
Bayliss, W. M., & Starling, E. H. (1902). The mechanism of pancreatic secretion. The Journal of physiology, 28, 325.
Beaumont, E., Southerland, E. M., Hardwick, J. C., Wright, G. L., Ryan, S., Li, Y., KenKnight, B. H., Armour, J. A., & Ardell, J. L. (2015). Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. American Journal of Physiology‐Heart and Circulatory Physiology, 309(7), H1198–H1206.
Bourke, T., Vaseghi, M., Michowitz, Y., Sankhla, V., Shah, M., Swapna, N., Boyle, N. G., Mahajan, A., Narasimhan, C., Lokhandwala, Y., & Shivkumar, K. (2010). Neuraxial modulation for refractory ventricular arrhythmias: Value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation, 121(21), 2255–2262.
Brouri, F., Hanoun, N., Mediani, O., Saurini, F., Hamon, M., Vanhoutte, P. M., & Lechat, P. (2004). Blockade of beta 1‐ and desensitization of beta 2‐adrenoceptors reduce isoprenaline‐induced cardiac fibrosis. European Journal of Pharmacology, 485(1–3), 227–234.
Brum, P. C., Kosek, J., Patterson, A., Bernstein, D., & Kobilka, B. (2002). Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. American Journal of Physiology‐Heart and Circulatory Physiology, 283(5), H1838–H1845.
Bundgaard, J. S., Jacobsen, P. K., Grand, J., Lindholm, M. G., Hassager, C., Pehrson, S., Kjaergaard, J., & Bundgaard, H. (2020). Deep sedation as temporary bridge to definitive treatment of ventricular arrhythmia storm. European Heart Journal‐Acute Cardiovascular Care, 9(6), 657–664.
Burnstock, G. (1980). Do some nerve cells release more than one transmitter? Commentaries in the Neurosciences, 151–160.
Burnstock, G. (2013). Chapter 3 ‐ Cotransmission in the autonomic nervous system. In R. M. Buijs, & D. F. Swaab (Eds.), Handbook of Clinical Neurology (pp. 23–35). Elsevier.
Buttgereit, J., Shanks, J., Li, D., Hao, G., Athwal, A., Langenickel, T. H., Wright, H., da Costa Goncalves, A. C., Monti, J., Plehm, R., Popova, E., Qadri, F., Lapidus, I., Ryan, B., Ozcelik, C., Paterson, D. J., Bader, M., & Herring, N. (2016). C‐type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovascular Research, 112(3), 637–644.
Callanan, E. Y., Lee, E. W., Tilan, J. U., Winaver, J., Haramati, A., Mulroney, S. E., & Zukowska, Z. (2007). Renal and cardiac neuropeptide Y and NPY receptors in a rat model of congestive heart failure. American Journal of Physiology‐Renal Physiology, 293(6), F1811–F1817.
Cao, J.‐M., Fishbein, M. C., Han, J. B., Lai, W. W., Lai, A. C., Wu, T.‐J., Czer, L., Wolf, P. L., Denton, T. A., & Shintaku, I. P. (2000). Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation, 101(16), 1960–1969.
Carey, D., Iismaa, T., Ho, K., Rajkovic, I., Kelly, J., Kraegen, E., Ferguson, J., Inglis, A., Shine, J., & Chisholm, D. (1993). Potent effects of human galanin in man: Growth hormone secretion and vagal blockade. The Journal of Clinical Endocrinology & Metabolism, 77(1), 90–93.
Chen, M., Li, X., Dong, Q., Li, Y., & Liang, W. (2005). Neuropeptide Y induces cardiomyocyte hypertrophy via calcineurin signaling in rats. Regulatory Peptides, 125(1–3), 9–15.
Chen, M., Wang, Z., Lai, X., Wang, S., Wu, Z., Liu, Q., & Zhou, S. (2023). Transient cardiac electrophysiological changes in a rat model of subarachnoid haemorrhage: A brain‐heart interaction. Europace, 25(6), euad171.
Chen, W. C., Liu, Y. B., Liu, W. F., Zhou, Y. Y., He, H. F., & Lin, S. (2020). Neuropeptide Y is an immunomodulatory factor: Direct and indirect. Frontiers in Immunology, 11, 580378.
Chin, A., Ntsekhe, M., Viljoen, C., Rossouw, J., Pennel, T., & Schwartz, P. J. (2017). Rationale and design of a prospective study to assess the effect of left cardiac sympathetic denervation in chronic heart failure. International Journal of Cardiology, 248, 227–231.
Chinkers, M., Garbers, D. L., Chang, M. S., Lowe, D. G., Chin, H. M., Goeddel, D. V., & Schulz, S. (1989). A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature, 338(6210), 78–83.
Choate, J., Danson, E., Morris, J., & Paterson, D. J. (2001). Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. American Journal of Physiology‐Heart and Circulatory Physiology, 281(6), H2310–H2317.
Choate, J. K., & Paterson, D. J. (1999). Nitric oxide inhibits the positive chronotropic and inotropic responses to sympathetic nerve stimulation in the isolated guinea‐pig atria. Journal of the Autonomic Nervous System, 75(2–3), 100–108.
CIBIS‐II Investigators and Committees. (1999). The cardiac insufficiency bisoprolol study II (CIBIS‐II): A randomised trial. The Lancet, 353(9146), 9–13.
Clarke, J. G., Kerwin, R., Larkin, S., Lee, Y., Yacoub, M., Davies, G. J., Hackett, D., Dawbarn, D., Bloom, S. R., & Maseri, A. (1987). Coronary artery infusion of neuropeptide Y in patients with angina pectoris. The Lancet, 1(8541), 1057–1059.
ClinicalTrials.gov. Identifier NCT01013714. Cardiac Sympathetic Denervation for Prevention of Ventricular Tachyarrhythmias ‐ (PREVENT VT). https://clinicaltrialsgov/ct2/show/NCT01013714
Cody, R. J., Franklin, K. W., Kluger, J., & Laragh, J. H. (1982). Sympathetic responsiveness and plasma norepinephrine during therapy of chronic congestive heart failure with captopril. The American Journal Of Medicine, 72(5), 791–797.
Cohn, J. N., Levine, T. B., Olivari, M. T., Garberg, V., Lura, D., Francis, G. S., Simon, A. B., & Rector, T. (1984). Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New England Journal of Medicine, 311(13), 819–823.
Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E., & Lauer, M. S. (1999). Heart‐rate recovery immediately after exercise as a predictor of mortality. New England Journal of Medicine, 341(18), 1351–1357.
Communal, C., Singh, K., Pimentel, D. R., & Colucci, W. S. (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta‐adrenergic pathway. Circulation, 98(13), 1329–1334.
Conceição‐Souza, G. E., Pêgo‐Fernandes, P. M., Cruz, F., Guimarães, G. V., Bacal, F., Vieira, M. L., Grupi, C. J., Giorgi, M. C., Consolim‐Colombo, F. M., Negrão, C. E., Rondon, M. U., Moreira, L. F., & Bocchi, E. A. (2012). Left cardiac sympathetic denervation for treatment of symptomatic systolic heart failure patients: A pilot study. European Journal of Heart Failure, 14(12), 1366–1373.
Corr, P. B., & Gillis, R. A. (1978). Autonomic neural influences on the dysrhythmias resulting from myocardial infarction. Circulation Research, 43(1), 1–9.
Crawley, J. N. (1995). Biological actions of galanin. Regulatory Peptides, 59(1), 1–16.
Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., Greenberg, D. A., Schwartz, P. J., & George, A. L., Jr (2009). NOS1AP is a genetic modifier of the long‐QT syndrome. Circulation, 120(17), 1657–1663.
Cuculi, F., Herring, N., De Caterina, A. R., Banning, A. P., Prendergast, B. D., Forfar, J. C., Choudhury, R. P., Channon, K. M., & Kharbanda, R. K. (2013). Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction. Heart, 99(16), 1198–1203.
Dae, M. W., Herre, J. M., O'Connell, J. W., Botvinick, E. H., Newman, D., & Munoz, L. (1991). Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. Journal of the American College of Cardiology, 17(6), 1416–1423.
Dae, M. W., O'Connell, J. W., Botvinick, E. H., & Chin, M. C. (1995). Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovascular Research, 30(2), 270–280.
Dajani, A. J., Liu, M. B., Olaopa, M. A., Cao, L., Valenzuela‐Ripoll, C., Davis, T. J., Poston, M. D., Smith, E. H., Contreras, J., Pennino, M., Waldmann, C. M., Hoover, D. B., Lee, J. T., Jay, P. Y., Javaheri, A., Slavik, R., Qu, Z., & Ajijola, O. A. (2023). Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. Joint Commission International Insight, 8(22), e157956.
Dale, H. H. (1935). “Walter Ernest Dixon Memorial Lecture. Pharmacology and Nerve‐endings.” Proceedings of the Royal Society of Medicine, 28, 15–28.
Davis, H., Herring, N., & Paterson, D. J. (2020). Downregulation of M current is coupled to membrane excitability in sympathetic neurons before the onset of hypertension. Hypertension, 76(6), 1915–1923.
Dawson, T. A., Li, D., Woodward, T., Barber, Z., Wang, L., & Paterson, D. J. (2008). Cardiac cholinergic NO‐cGMP signaling following acute myocardial infarction and nNOS gene transfer. American Journal of Physiology‐Heart and Circulatory Physiology, 295(3), H990–H998.
De Ferrari, G. M., Sanzo, A., Bertoletti, A., Specchia, G., Vanoli, E., & Schwartz, P. J. (2007). Baroreflex sensitivity predicts long‐term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. Journal of the American College of Cardiology, 50(24), 2285–2290.
del Puy Heredia, M., Delgado, C., Pereira, L., Perrier, R., Richard, S., Vassort, G., Bénitah, J.‐P., & Gómez, A. M. (2005). Neuropeptide Y rapidly enhances [Ca2+] i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. Journal of Molecular And Cellular Cardiology, 38(1), 205–212.
Del Rio, C. L., Dawson, T. A., Clymer, B. D., Paterson, D. J., & Billman, G. E. (2008). Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: Heart rate‐mediated attenuation. Experimental Physiology, 93(8), 931–944.
Deyell, M. W., Krahn, A. D., & Goldberger, J. J. (2015). Sudden cardiac death risk stratification. Circulation Research, 116(12), 1907–1918.
DiBona, G. F., Jones, S. Y., & Brooks, V. L. (1995). ANG II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 269(5 Pt 2), R1189–R1196.
Dimitrijević, M., Stanojević, S., Mitić, K., Kuštrimović, N., Vujić, V., Miletić, T., & Kovačević‐Jovanović, V. (2008). The anti‐inflammatory effect of neuropeptide Y (NPY) in rats is dependent on dipeptidyl peptidase 4 (DP4) activity and age. Peptides, 29(12), 2179–2187.
Do, D. H., Bradfield, J., Ajijola, O. A., Vaseghi, M., Le, J., Rahman, S., Mahajan, A., Nogami, A., Boyle, N. G., & Shivkumar, K. (2017). Thoracic epidural anesthesia can be effective for the short‐term management of ventricular tachycardia storm. Journal of the American Heart Association, 6(11), e007080.
Díaz, H. S., Toledo, C., Andrade, D. C., Marcus, N. J., & Del Rio, R. (2020). Neuroinflammation in heart failure: New insights for an old disease. The Journal of Physiology, 598(1), 33–59.
Díaz‐Cabiale, Z., Parrado, C., Narváez, M., Millón, C., Puigcerver, A., Fuxe, K., & Narváez, J. A. (2010). Neurochemical modulation of central cardiovascular control: The integrative role of galanin. Experientia Supplementum, 102, 113–131.
Eckberg, D. L. (1997). Baroreflexes and the failing human heart. Circulation, 96(12), 4133–4137.
Eckberg, D. L., Drabinsky, M., & Braunwald, E. (1971). Defective cardiac parasympathetic control in patients with heart disease. New England Journal of Medicine, 285(16), 877–883.
Eijgelsheim, M., Newton‐Cheh, C., Aarnoudse, A. L., van Noord, C., Witteman, J. C., Hofman, A., Uitterlinden, A. G., & Stricker, B. H. (2009). Genetic variation in NOS1AP is associated with sudden cardiac death: Evidence from the Rotterdam Study. Human Molecular Genetics, 18(21), 4213–4218.
Ekblad, E., Edvinsson, L., Wahlestedt, C., Uddman, R., Håkanson, R., & Sundler, F. (1984). Neuropeptide Y co‐exists and co‐operates with noradrenaline in perivascular nerve fibers. Regulatory Peptides, 8(3), 225–235.
Elstad, M., Walløe, L., Holme, N. L., Maes, E., & Thoresen, M. (2015). Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high‐frequency interval in healthy humans. European Journal of Applied Physiology, 115(3), 521–530.
Eschenhagen, T. (2008). Beta‐adrenergic signaling in heart failure‐adapt or die. Nature Medicine, 14(5), 485–487.
Eshun, D., Saraf, R., Bae, S., Jeganathan, J., Mahmood, F., Dilmen, S., Ke, Q., Lee, D., Kang, P. M., & Matyal, R. (2017). Neuropeptide Y3‐36 incorporated into PVAX nanoparticle improves functional blood flow in a murine model of hind limb ischemia. Journal of Applied Physiology, 122(6), 1388–1397.
Espiner, E. A. (1994). Physiology of natriuretic peptides. Journal of Internal Medicine, 235(6), 527–541.
Eugster, P. J., Bourdillon, N., Vocat, C., Wuerzner, G., Nguyen, T., Millet, G. P., & Grouzmann, E. (2022). Kinetics of neuropeptide Y, catecholamines, and physiological responses during moderate and heavy intensity exercises. Neuropeptides, 92, 102232.
Ezzat, V. A., Lee, V., Ahsan, S., Chow, A. W., Segal, O., Rowland, E., Lowe, M. D., & Lambiase, P. D. (2015). A systematic review of ICD complications in randomised controlled trials versus registries: Is our ‘real‐world’ data an underestimation? Open Heart, 2(1), e000198.
Fallavollita, J. A., Dare, J. D., Carter, R. L., Baldwa, S., & Canty Jr J. M. (2017). Denervated myocardium is preferentially associated with sudden cardiac arrest in ischemic cardiomyopathy: A pilot competing risks analysis of cause‐specific mortality. Circulation: Cardiovascular Imaging, 10(8), e006446.
Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M., & Mark, A. L. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. American Journal of Cardiology, 69(5), 523–531.
Florea, V. G., & Cohn, J. N. (2014). The autonomic nervous system and heart failure. Circulation Research, 114(11), 1815–1826.
Francois‐Franck, C. (1899). Signification physiologique de la résection du sympathique dans la maladie de Basedow, l’épilepsie, l'idiotie et le glaucome. Bulletin de l'Academie Nationale de Medecine (Paris), 41, 565–594.
Fried, G., Terenius, L., Hökfelt, T., & Goldstein, M. (1985). Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. Journal of Neuroscience, 5(2), 450–458.
Fu, Y. C., Chi, C. S., Yin, S. C., Hwang, B., Chiu, Y. T., & Hsu, S. L. (2004). Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species‐TNF alpha‐caspase signaling pathway. Cardiovascular Research, 62(3), 558–567.
Galiuto, L., De Caterina, A. R., Porfidia, A., Paraggio, L., Barchetta, S., Locorotondo, G., Rebuzzi, A. G., & Crea, F. (2010). Reversible coronary microvascular dysfunction: A common pathogenetic mechanism in Apical Ballooning or Tako‐Tsubo Syndrome. European Heart Journal, 31(11), 1319–1327.
Gazes, P. C., Richardson, J. A., & Woods, E. F. (1959). Plasma catechol amine concentrations in myocardial infarction and angina pectoris. Circulation, 19(5), 657–661.
Ghadri, J. R., Wittstein, I. S., Prasad, A., Sharkey, S., Dote, K., Akashi, Y. J., Cammann, V. L., Crea, F., Galiuto, L., Desmet, W., Yoshida, T., Manfredini, R., Eitel, I., Kosuge, M., Nef, H. M., Deshmukh, A., Lerman, A., Bossone, E., Citro, R., … Templin, C. (2018). International expert consensus document on takotsubo syndrome (Part I): Clinical characteristics, diagnostic criteria, and pathophysiology. European Heart Journal, 39(22), 2032–2046.
Giardino, N. D., Glenny, R. W., Borson, S., & Chan, L. (2003). Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. American Journal of Physiology‐Heart and Circulatory Physiology, 284(5), H1585–H1591.
Gibbs, T., Tapoulal, N., Shanmuganathan, M., Burrage, M. K., Borlotti, A., Banning, A. P., Choudhury, R. P., Neubauer, S., Kharbanda, R. K., Ferreira, V. M., Channon, K. M., Herring, N., & Ox, A. (2022). Neuropeptide‐Y levels in ST‐segment‐elevation myocardial infarction: Relationship with coronary microvascular function, heart failure, and mortality. Journal of the American Heart Association, 11(13), e024850.
Gold, M. R., Van Veldhuisen, D. J., Hauptman, P. J., Borggrefe, M., Kubo, S. H., Lieberman, R. A., Milasinovic, G., Berman, B. J., Djordjevic, S., Neelagaru, S., Schwartz, P. J., Starling, R. C., & Mann, D. L. (2016). Vagus nerve stimulation for the treatment of heart failure: The INOVATE‐HF trial. Journal of the American College of Cardiology, 68(2), 149–158.
Goldberger, J. J., Arora, R., Buckley, U., & Shivkumar, K. (2019). Autonomic nervous system dysfunction: JACC focus seminar. Journal of the American College of Cardiology, 73(10), 1189–1206.
Grassi, G. (2009). Assessment of sympathetic cardiovascular drive in human hypertension: Achievements and perspectives. Hypertension, 54(4), 690–697.
Grassi, G., Seravalle, G., Cattaneo, B. M., Lanfranchi, A., Vailati, S., Giannattasio, C., Del Bo, A., Sala, C., Bolla, G. B., & Pozzi, M. (1995). Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation, 92(11), 3206–3211.
Gronda, E., Seravalle, G., Brambilla, G., Costantino, G., Casini, A., Alsheraei, A., Lovett, E. G., Mancia, G., & Grassi, G. (2014). Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: A proof‐of‐concept study. European Journal of Heart Failure, 16(9), 977–983.
Gu, J., Adrian, T., Tatemoto, K., Polak, J., Allen, J., & Bloom, S. (1983). Neuropeptide tyrosine (NPY)—a major cardiac neuropeptide. The Lancet, 1(8332), 1008–1010.
Han, S., Kobayashi, K., Joung, B., Piccirillo, G., Maruyama, M., Vinters, H. V., March, K., Lin, S.‐F., Shen, C., & Fishbein, M. C. (2012). Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. Journal of the American College of Cardiology, 59(10), 954–961.
Hanna, P., Dacey, M. J., Brennan, J., Moss, A., Robbins, S., Achanta, S., Biscola, N. P., Swid, M. A., Rajendran, P. S., Mori, S., Hadaya, J. E., Smith, E. H., Peirce, S. G., Chen, J., Havton, L., Cheng, Z. J., Vadigepalli, R., Schwaber, J. S., Lux, R. L., … Shivkumar, K. (2021). Innervation and neuronal control of the mammalian sinoatrial node: A comprehensive atlas. Circulation Research, 28(9), 1279–1296.
Harris, A. S., Otero, H., & Bocage, A. J. (1971). The induction of arrhythmias by sympathetic activity before and after occlusion of a coronary artery in the canine heart. Journal of Electrocardiology, 4(1), 34–43.
Hawkins, N. M., Grubisic, M., Andrade, J. G., Huang, F., Ding, L., Gao, M., & Bashir, J. (2018). Long‐term complications, reoperations and survival following cardioverter‐defibrillator implant. Heart, 104(3), 237–243.
Heaton, D. A., Golding, S., Bradley, C. P., Dawson, T. A., Cai, S., Channon, K. M., & Paterson, D. J. (2005). Targeted nNOS gene transfer into the cardiac vagus rapidly increases parasympathetic function in the pig. Journal of Molecular and Cellular Cardiology, 39(1), 159–164.
Heaton, D. A., Li, D., Almond, S. C., Dawson, T. A., Wang, L., Channon, K. M., & Paterson, D. J. (2007). Gene transfer of neuronal nitric oxide synthase into intracardiac ganglia reverses vagal impairment in hypertensive rats. Hypertension, 49(2), 380–388.
Hein, L., Altman, J. D., & Kobilka, B. K. (1999). Two functionally distinct α2‐adrenergic receptors regulate sympathetic neurotransmission. Nature, 402(6758), 181–184.
Hering, D., Marusic, P., Walton, A. S., Lambert, E. A., Krum, H., Narkiewicz, K., Lambert, G. W., Esler, M. D., & Schlaich, M. P. (2014). Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension, 64(1), 118–124.
Herring, N., Cranley, J., Lokale, M. N., Li, D., Shanks, J., Alston, E. N., Girard, B. M., Carter, E., Parsons, R. L., & Habecker, B. A. (2012). The cardiac sympathetic co‐transmitter galanin reduces acetylcholine release and vagal bradycardia: Implications for neural control of cardiac excitability. Journal of Molecular and Cellular Cardiology, 52(3), 667–676.
Herring, N., Danson, E. J., & Paterson, D. J. (2002). Cholinergic control of heart rate by nitric oxide is site specific. News in Physiological Sciences, 17, 202–206.
Herring, N., Golding, S., & Paterson, D. J. (2000). Pre‐synaptic NO‐cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. Journal of Molecular and Cellular Cardiology, 32(10), 1795–1804.
Herring, N., Kalla, M., & Paterson, D. J. (2019a). The autonomic nervous system and cardiac arrhythmias: Current concepts and emerging therapies. Nature Reviews Cardiology, 16(12), 707–726.
Herring, N., Lee, C. W., Sunderland, N., Wright, K., & Paterson, D. J. (2011). Pravastatin normalises peripheral cardiac sympathetic hyperactivity in the spontaneously hypertensive rat. Journal of Molecular and Cellular Cardiology, 50(1), 99–106.
Herring, N., Lokale, M. N., Danson, E. J., Heaton, D. A., & Paterson, D. J. (2008). Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor‐mediated, protein kinase C‐dependent pathway. Journal of Molecular and Cellular Cardiology, 44(3), 477–485.
Herring, N., & Paterson, D. J. (2001). Nitric oxide‐cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea‐pig in vitro. The Journal of Physiology, 535(Pt 2), 507–518.
Herring, N., Tapoulal, N., Kalla, M., Ye, X., Borysova, L., Lee, R., Dall'Armellina, E., Stanley, C., Ascione, R., Lu, C. J., Banning, A. P., Choudhury, R. P., Neubauer, S., Dora, K., Kharbanda, R. K., Channon, K. M., & Oxford Acute Myocardial Infarction (OxAMI) Study. (2019b). Neuropeptide‐Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST‐elevation myocardial infarction. European Heart Journal, 40(24), 1920–1929.
Herring, N., Zaman, J. A., & Paterson, D. J. (2001). Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. American Journal of Physiology‐Heart and Circulatory Physiology, 281(6), H2318–H2327.
Hoang, J. D., Salavatian, S., Yamaguchi, N., Swid, M. A., David, H., & Vaseghi, M. (2020). Cardiac sympathetic activation circumvents high‐dose beta blocker therapy in part through release of neuropeptide Y. Joint Commission International Insight, 5(11), e135519.
Hu, J., Xu, X., Zuo, Y., Gao, X., Wang, Y., Xiong, C., Zhou, H., & Zhu, S. (2017). NPY impairs cell viability and mitochondrial membrane potential through Ca2+ and p38 signaling pathways in neonatal rat cardiomyocytes. Journal of Cardiovascular Pharmacology, 70(1), 52–59.
Huang, T.‐C., Lin, S.‐J., Chen, C.‐J., Jhuo, S.‐J., Chang, C.‐W., Lin, S.‐C., Chi, N.‐Y., Chou, L.‐F., Tai, L.‐H., Liu, Y.‐H., Lin, T.‐H., Liao, W.‐S., Kao, P.‐H., Cheng, M.‐C., Hsu, P.‐C., Lee, C.‐S., Lin, Y.‐H., Lee, H.‐C., Lu, Y.‐H., … Tsai, W.‐C. (2022). Skin sympathetic nerve activity and ventricular arrhythmias in acute coronary syndrome. Heart Rhythm, 19(10), 1613–1619.
Huang, W., Zhang, Q., Qi, H., Shi, P., Song, C., Liu, Y., & Sun, H. (2019). Deletion of neuropeptide Y attenuates cardiac dysfunction and apoptosis during acute myocardial infarction. Frontiers in Pharmacology, 10, 1268.
Huang, Z. M., Gold, J. I., & Koch, W. J. (2011). G protein‐coupled receptor kinases in normal and failing myocardium. Frontiers in bioscience (Landmark edition), 16(8), 3047–3060.
Ilebekk, A., Bjorkman, J. A., & Nordlander, M. (2005). Influence of endogenous neuropeptide Y (NPY) on the sympathetic‐parasympathetic interaction in the canine heart. Journal of Cardiovascular Pharmacology, 46(4), 474–480.
Ishise, H., Asanoi, H., Ishizaka, S., Joho, S., Kameyama, T., Umeno, K., & Inoue, H. (1998). Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. Journal of Applied Physiology (1985), 84(4), 1234–1241.
Jaffrey, S. R., Benfenati, F., Snowman, A. M., Czernik, A. J., & Snyder, S. H. (2002). Neuronal nitric‐oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proceedings of the National Academy of Sciences, 99(5), 3199–3204.
Jardine, D. L., Charles, C. J., Ashton, R. K., Bennett, S. I., Whitehead, M., Frampton, C. M., & Nicholls, M. G. (2005). Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model. The Journal of Physiology, 565(Pt 1), 325–333.
Jiang, Y., Po, S. S., Amil, F., & Dasari, T. W. (2020). Non‐invasive low‐level tragus stimulation in cardiovascular diseases. Arrhythmia & Electrophysiology Review, 9(1), 40–46.
Joca, H. C., Santos‐Miranda, A., Joviano‐Santos, J. V., Maia‐Joca, R. P. M., Brum, P. C., Williams, G. S. B., & Cruz, J. S. (2020). Chronic sympathetic hyperactivity triggers electrophysiological remodeling and disrupts excitation‐contraction coupling in heart. Scientific Reports, 10(1), 8001.
JONNESCO, T. (1921). Traitement chirurgical de l'angine de poitrine par la résection du sympathique cervico‐thoracique. Gaz. Hôp. 93, 1600 (1920). Ref Z org Chir, 11, 357.
Kalla, M., Chotalia, M., Coughlan, C., Hao, G., Crabtree, M. J., Tomek, J., Bub, G., Paterson, D. J., & Herring, N. (2016). Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. The Journal of Physiology, 594(14), 3981–3992.
Kalla, M., Hao, G., Tapoulal, N., Tomek, J., Liu, K., Woodward, L., Oxford Acute Myocardial Infarction, S., Dall'Armellina, E., Banning, A. P., Choudhury, R. P., Neubauer, S., Kharbanda, R. K., Channon, K. M., Ajijola, O. A., Shivkumar, K., Paterson, D. J., & Herring, N. (2020). The cardiac sympathetic co‐transmitter neuropeptide Y is pro‐arrhythmic following ST‐elevation myocardial infarction despite beta‐blockade. European Heart Journal, 41(23), 2168–2179.
Kalra, P. R., Clague, J. R., Bolger, A. P., Anker, S. D., Poole‐Wilson, P. A., Struthers, A. D., & Coats, A. J. (2003). Myocardial production of C‐type natriuretic peptide in chronic heart failure. Circulation, 107(4), 571–573.
Kaufmann, H., Norcliffe‐Kaufmann, L., & Palma, J. A. (2020). Baroreflex dysfunction. New England Journal of Medicine, 382(2), 163–178.
Kollai, M., & Koizumi, K. (1979). Reciprocal and non‐reciprocal action of the vagal and sympathetic nerves innervating the heart. Journal of the Autonomic Nervous System, 1(1), 33–52.
Konstam, M. A., Udelson, J. E., Butler, J., Klein, H. U., Parker, J. D., Teerlink, J. R., Wedge, P. M., Saville, B. R., Ardell, J. L., Libbus, I., & DiCarlo, L. A. (2019). Impact of autonomic regulation therapy in patients with heart failure: ANTHEM‐HFrEF pivotal study design. Circulation: Heart Failure, 12(11), e005879.
Kummer, W. (1987). Galanin‐ and neuropeptide Y‐like immunoreactivities coexist in paravertebral sympathetic neurones of the cat. Neuroscience Letters, 78(2), 127–131.
Kuwahara, K. (2021). The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacology & Therapeutics, 227, 107863.
La Rovere, M. T., Bigger, J. T., Jr., Marcus, F. I., Mortara, A., & Schwartz, P. J. (1998). Baroreflex sensitivity and heart‐rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet, 351(9101), 478–484.
La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., Sleight, P., & Febo, O. (2009). Prognostic implications of baroreflex sensitivity in heart failure patients in the beta‐blocking era. Journal of the American College of Cardiology, 53(2), 193–199.
Lee, C. Y., & Burnett, J. C., Jr (2007). Natriuretic peptides and therapeutic applications. Heart Failure Reviews, 12(2), 131–142.
Lee, E. W., Michalkiewicz, M., Kitlinska, J., Kalezic, I., Switalska, H., Yoo, P., Sangkharat, A., Ji, H., Li, L., & Michalkiewicz, T. (2003). Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. The Journal of Clinical Investigation, 111(12), 1853–1862.
Legakis, I., Mantzouridis, T., Saramantis, A., Phenekos, C., Tzioras, C., & Mountokalakis, T. (2000). Human galanin secretion is increased upon normal exercise test in middle‐age individuals. Endocrine Research, 26(3), 357–364.
Leimbach, W. N., Jr., Wallin, B. G., Victor, R. G., Aylward, P. E., Sundlöf, G., & Mark, A. L. (1986). Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation, 73(5), 913–919.
Levy, M. N., & Martin, P. J. (1989). Autonomic neural control of cardiac function. In Physiology and Pathophysiology of the Heart (pp. 361–379). Springer.
Li, C.‐Y., & Li, Y.‐G. (2015). Cardiac sympathetic nerve sprouting and susceptibility to ventricular arrhythmias after myocardial infarction. Cardiology Research and Practice, 2015, 698368.
Li, D., Lee, C. W., Buckler, K., Parekh, A., Herring, N., & Paterson, D. J. (2012). Abnormal intracellular calcium homeostasis in sympathetic neurons from young prehypertensive rats. Hypertension, 59(3), 642–649.
Li, D., Lu, C.‐J., Hao, G., Wright, H., Woodward, L., Liu, K., Vergari, E., Surdo, N. C., Herring, N., Zaccolo, M., & Paterson, D. J. (2015). Efficacy of B‐type natriuretic peptide is coupled to phosphodiesterase 2A in cardiac sympathetic neurons. Hypertension, 66(1), 190–198.
Li, D., Nikiforova, N., Lu, C.‐J., Wannop, K., McMenamin, M., Lee, C.‐w, Buckler, K. J., & Paterson, D. J. (2013). Targeted neuronal nitric oxide synthase transgene delivery into stellate neurons reverses impaired intracellular calcium transients in prehypertensive rats. Hypertension, 61(1), 202–207.
Li, D., & Paterson, D. J. (2016). Cyclic nucleotide regulation of cardiac sympatho‐vagal responsiveness. The Journal of Physiology, 594(14), 3993–4008.
Li, D., Wang, L., Lee, C.‐W., Dawson, T. A., & Paterson, D. J. (2007). Noradrenergic cell specific gene transfer with neuronal nitric oxide synthase reduces cardiac sympathetic neurotransmission in hypertensive rats. Hypertension, 50(1), 69–74.
Liu, K., Li, D., Hao, G., McCaffary, D., Neely, O., Woodward, L., Ioannides, D., Lu, C. J., Brescia, M., Zaccolo, M., Tandri, H., Ajijola, O. A., Ardell, J. L., Shivkumar, K., & Paterson, D. J. (2018). Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. Joint Commission International Insight, 3(9), e98694.
Lu, C. J., Hao, G., Nikiforova, N., Larsen, H. E., Liu, K., Crabtree, M. J., Li, D., Herring, N., & Paterson, D. J. (2015). CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension, 65(6), 1288–1297.
Lubbe, W. F., Podzuweit, T., & Opie, L. H. (1992). Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium overload: Implications for prophylactic effects of beta‐blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase inhibitors. Journal of the American College of Cardiology, 19(7), 1622–1633.
Lundberg, J. M., Franco‐Cereceda, A., Lacroix, J. S., & Pernow, J. (1990). Neuropeptide Y and sympathetic neurotransmission. Annals of the New York Academy of Sciences, 611, 166–174.
Lundberg, J. M., Rudehill, A., Sollevi, A., Fried, G., & Wallin, G. (1989). Co‐release of neuropeptide Y and noradrenaline from pig spleen in vivo: Importance of subcellular storage, nerve impulse frequency and pattern, feedback regulation and resupply by axonal transport. Neuroscience, 28(2), 475–486.
Lundberg, J. M., Terenius, L., Hökfelt, T., & Goldstein, M. (1983). High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neuroscience Letters, 42(2), 167–172.
Luo, G., Xu, X., Guo, W., Luo, C., Wang, H., Meng, X., Zhu, S., & Wei, Y. (2015). Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides, 71, 162–169.
Lymperopoulos, A., Rengo, G., & Koch, W. J. (2013). Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circulation Research, 113(6), 739–753.
Lyon, A. R., Citro, R., Schneider, B., Morel, O., Ghadri, J. R., Templin, C., & Omerovic, E. (2021). Pathophysiology of takotsubo syndrome: JACC state‐of‐the‐art review. Journal of the American College of Cardiology, 77(7), 902–921.
Ma, R., Zucker, I. H., & Wang, W. (1997). Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. American Journal of Physiology, 273(6), H2664–H2671.
Mahmood, E., Bae, S., Chaudhary, O., Feng, R., Mahmood, F., Robson, S., Lee, D., Kang, P. M., & Matyal, R. (2020). Neuropeptide Y3‐36 incorporated into PVAX nanoparticle improves angiogenesis in a murine model of myocardial ischemia. European Journal of Pharmacology, 882, 173261.
Maisel, A. S., Scott, N. A., Motulsky, H. J., Michel, M. C., Boublik, J. H., Rivier, J. E., Ziegler, M., Allen, R. S., & Brown, M. R. (1989). Elevation of plasma neuropeptide Y levels in congestive heart failure. American Journal of Medicine, 86(1), 43–48.
Malliani, A., Schwartz, P. J., & Zanchetti, A. (1969). A sympathetic reflex elicited by experimental coronary occlusion. American Journal of Physiology, 217(3), 703–709.
Martin, C., Annette, B., Helen, C., Henri, N., Herbert, H., Dan, L., Remi, Q., Thue, S., & Thomas, W. (1998). International union of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacological Reviews, 50(1), 143–150.
Matyal, R., Sakamuri, S., Wang, A., Mahmood, E., Robich, M. P., Khabbaz, K., Hess, P. E., Sellke, F. W., & Mahmood, F. (2013). Local infiltration of neuropeptide Y as a potential therapeutic agent against apoptosis and fibrosis in a swine model of hypercholesterolemia and chronic myocardial ischemia. European Journal of Pharmacology, 718(1–3), 261–270.
McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., Burri, H., Butler, J., Čelutkienė, J., Chioncel, O., Cleland, J. G. F., Coats, A. J. S., Crespo‐Leiro, M. G., Farmakis, D., Gilard, M., Heymans, S., Hoes, A. W., Jaarsma, T., Jankowska, E. A., … Group ESD. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 42, 3599–3726.
McDowell, K., Adamson, C., Jackson, C., Campbell, R., Welsh, P., Petrie, M. C., McMurray, J. J. V., Jhund, P. S., & Herring, N. (2024). Neuropeptide Y is elevated in heart failure and is an independent predictor of outcomes. European Journal of Heart Failure, 26(1), 107–116.
Mehel, H., Emons, J., Vettel, C., Wittköpper, K., Seppelt, D., Dewenter, M., Lutz, S., Sossalla, S., Maier, L. S., Lechêne, P., Leroy, J., Lefebvre, F., Varin, A., Eschenhagen, T., Nattel, S., Dobrev, D., Zimmermann, W. H., Nikolaev, V. O., Vandecasteele, G., … El‐Armouche, A. (2013). Phosphodiesterase‐2 is up‐regulated in human failing hearts and blunts β‐adrenergic responses in cardiomyocytes. Journal of the American College of Cardiology, 62(17), 1596–1606.
Meredith, I. T., Eisenhofer, G., Lambert, G. W., Dewar, E. M., Jennings, G. L., & Esler, M. D. (1993). Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation, 88(1), 136–145.
Merit‐HF Study Group. (1999). Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in‐congestive heart failure (MERIT‐HF). The Lancet, 353(9169), 2001–2007.
Michael Frangiskakis, J., Hravnak, M., Crago, E. A., Tanabe, M., Kip, K. E., Gorcsan, J., Horowitz, M. B., Kassam, A. B., & London, B. (2009). Ventricular arrhythmia risk after subarachnoid hemorrhage. Neurocritical care, 10(3), 287–294.
Millar, B. C., Schlüter, K. D., Zhou, X. J., McDermott, B. J., & Piper, H. M. (1994). Neuropeptide Y stimulates hypertrophy of adult ventricular cardiomyocytes. American Journal of Physiology, 266(5 Pt 1), C1271–C1277.
Mitrani, R. D., & Myerburg, R. J. (2016). Ten advances defining sudden cardiac death. Trends in Cardiovascular Medicine, 26(1), 23–33.
Mohan, R. M., Golding, S., & Paterson, D. J. (2001). Intermittent hypoxia modulates nNOS expression and heart rate response to sympathetic nerve stimulation. American Journal of Physiology‐Heart and Circulatory Physiology, 281(1), H132–H138.
Mohan, R. M., Heaton, D. A., Danson, E. J. F., Krishnan, S. P. R., Cai, S., Channon, K. M., & Paterson, D. J. (2002). Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circulation Research, 91(12), 1089–1091.
Mongillo, M., Tocchetti, C. G., Terrin, A., Lissandron, V., Cheung, Y. F., Dostmann, W. R., Pozzan, T., Kass, D. A., Paolocci, N., Houslay, M. D., & Zaccolo, M. (2006). Compartmentalized phosphodiesterase‐2 activity blunts beta‐adrenergic cardiac inotropy via an NO/cGMP‐dependent pathway. Circulation Research, 98(2), 226–234.
Morris, M. J., Cox, H. S., Lambert, G. W., Kaye, D. M., Jennings, G. L., Meredith, I. T., & Esler, M. D. (1997). Region‐specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension, 29(1 Pt 1), 137–143.
Moss, A. J., Zareba, W., Hall, W. J., Klein, H., Wilber, D. J., Cannom, D. S., Daubert, J. P., Higgins, S. L., Brown, M. W., Andrews, M. L., & Multicenter Automatic Defibrillator Implantation Trial III. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. New England Journal of Medicine, 346(12), 877–883.
Motte, S., Mathieu, M., Brimioulle, S., Pensis, A., Ray, L., Ketelslegers, J. M., Montano, N., Naeije, R., van de Borne, P., & Entee, K. M. (2005). Respiratory‐related heart rate variability in progressive experimental heart failure. American Journal of Physiology‐Heart and Circulatory Physiology, 289(4), H1729–H1735.
Myers, R. W., Pearlman, A. S., Hyman, R. M., Goldstein, R. A., Kent, K. M., Goldstein, R. E., & Epstein, S. E. (1974). Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation, 49(5), 943–947.
Nahrendorf, M., & Swirski, F. K. (2013). Monocyte and macrophage heterogeneity in the heart. Circulation Research, 112(12), 1624–1633.
Nash, M. P., Thornton, J. M., Sears, C. E., Varghese, A., O'Neill, M., & Paterson, D. J. (2001). Ventricular activation during sympathetic imbalance and its computational reconstruction. Journal of Applied Physiology (1985), 90(1), 287–298.
Ng, G. A., Mantravadi, R., Walker, W. H., Ortin, W. G., Choi, B. R., de Groat, W., & Salama, G. (2009). Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart Rhythm, 6(5), 696–706.
Nicholl, S. M., Bell, D., Paul Spiers, J., & McDermott, B. J. (2002). Neuropeptide Y Y1 receptor regulates protein turnover and constitutive gene expression in hypertrophying cardiomyocytes. European Journal of Pharmacology, 441(1–2), 23–34.
Nuzum, F. R., & Bischoff, F. (1953). The urinary output of catechol derivatives including adrenaline in normal individuals, in essential hypertension, and in myocardial infarction. Circulation, 7(1), 96–101.
Olivari, M. T., Levine, T. B., & Cohn, J. N. (1983). Abnormal neurohumoral response to nitroprusside infusion in congestive heart failure. Journal of the American College of Cardiology, 2(3), 411–417.
Omland, T., Opstad, P. K., & Dickstein, K. (1994). Plasma neuropeptide Y levels in the acute and early convalescent phase after myocardial infarction. American Heart Journal, 127(4 Pt 1), 774–779.
Osterziel, K. J., Dietz, R., Werner, S., Mikulaschek, K., Manthey, J., & Kübler, W. (1990). ACE inhibition improves vagal reactivity in patients with heart failure. American Heart Journal, 120(5), 1120–1129.
Parthenakis, F., Prassopoulos, V., Koukouraki, S., Zacharis, E., Diakakis, G., Karkavitsas, N., & Vardas, P. (2002). Segmental pattern of myocardial sympathetic denervation in idiopathic dilated cardiomyopathy: Relationship to regional wall motion and myocardial perfusion abnormalities. Journal of Nuclear Cardiology, 9(1), 15–22.
Paton, J. F. R., Kasparov, S., & Paterson, D. J. (2002). Nitric oxide and autonomic control of heart rate: A question of specificity. Trends in Neurosciences, 25(12), 626–631.
Patterson, S. W., Piper, H., & Starling, E. (1914). The regulation of the heart beat. The Journal of physiology, 48(6), 465–513.
Pelliccia, F., Kaski, J. C., Crea, F., & Camici, P. G. (2017). Pathophysiology of Takotsubo Syndrome. Circulation, 135(24), 2426–2441.
Pfeffer, M. A. (1995). Left ventricular remodeling after acute myocardial infarction. Annual Review of Medicine, 46, 455–466.
Pinna, G. D., Maestri, R., Capomolla, S., Febo, O., Robbi, E., Cobelli, F., & La Rovere, M. T. (2005). Applicability and clinical relevance of the transfer function method in the assessment of baroreflex sensitivity in heart failure patients. Journal of the American College of Cardiology, 46(7), 1314–1321.
Potter, E. (1987). Presynaptic inhibition of cardiac vagal postganglionic nerves by neuropeptide Y. Neuroscience Letters, 83(1–2), 101–106.
Potter, E. K. (1985). Prolonged non‐adrenergic inhibition of cardiac vagal action following sympathetic stimulation: Neuromodulation by neuropeptide Y? Neuroscience Letters, 54(2–3), 117–121.
Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., DiCarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., KenKnight, B. H., & Anand, I. S. (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: Results of the ANTHEM‐HF trial. Journal of Cardiac Failure, 20(11), 808–816.
Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., DiCarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., KenKnight, B. H., & Anand, I. S. (2016). Extended follow‐up of patients with heart failure receiving autonomic regulation therapy in the ANTHEM‐HF study. Journal of Cardiac Failure, 22(8), 639–642.
Priori, S. G., Mantica, M., & Schwartz, P. J. (1988). Delayed afterdepolarizations elicited in vivo by left stellate ganglion stimulation. Circulation, 78(1), 178–185.
Qin, Y. Y., Huang, X. R., Zhang, J., Wu, W., Chen, J., Wan, S., Yu, X. Y., & Lan, H. Y. (2022). Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction. Molecular Therapy, 30(2), 881–897.
Rajendran, P. S., Challis, R. C., Fowlkes, C. C., Hanna, P., Tompkins, J. D., Jordan, M. C., Hiyari, S., Gabris‐Weber, B. A., Greenbaum, A., Chan, K. Y., Deverman, B. E., Münzberg, H., Ardell, J. L., Salama, G., Gradinaru, V., & Shivkumar, K. (2019). Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications, 10(1), 1944.
Rajendran, P. S., Nakamura, K., Ajijola, O. A., Vaseghi, M., Armour, J. A., Ardell, J. L., & Shivkumar, K. (2016). Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. The Journal of Physiology, 594(2), 321–341.
Ramchandra, R., & Barrett, C. J. (2015). Regulation of the renal sympathetic nerves in heart failure. Frontiers in Physiology, 6, 238.
Rizzo, S., Basso, C., Troost, D., Aronica, E., Frigo, A. C., Driessen, A. H., Thiene, G., Wilde, A. A., & van der Wal, A. C. (2014). T‐cell‐mediated inflammatory activity in the stellate ganglia of patients with ion‐channel disease and severe ventricular arrhythmias. Circulation: Arrhythmia and Electrophysiology, 7(2), 224–229.
Robich, M. P., Matyal, R., Chu, L. M., Feng, J., Xu, S.‐H., Laham, R. J., Hess, P. E., Bianchi, C., & Sellke, F. W. (2010). Effects of neuropeptide Y on collateral development in a swine model of chronic myocardial ischemia. Journal of molecular and cellular cardiology, 49(6), 1022–1030.
Sanguinetti, M. C., Jurkiewicz, N. K., Scott, A., & Siegl, P. K. (1991). Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E‐4031 in guinea pig myocytes. Mechanism of action. Circulation Research, 68(1), 77–84.
Saraf, R., Mahmood, F., Amir, R., & Matyal, R. (2016). Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. European Journal of Pharmacology, 776, 64–70.
Sasaoka, T., Egi, Y., Tawa, M., Yamamoto, A., Ohkita, M., Takaoka, M., Maruyama, T., Akira, T., & Matsumura, Y. (2008). Angiotensin II type 2 receptor‐mediated inhibition of norepinephrine release in isolated rat hearts. Journal of Cardiovascular Pharmacology, 52(2), 176–183.
Saternos, H. C., Almarghalani, D. A., Gibson, H. M., Meqdad, M. A., Antypas, R. B., Lingireddy, A., & AbouAlaiwi, W. A. (2018). Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiological Genomics, 50(1), 1–9.
Saul, J. P., Arai, Y., Berger, R. D., Lilly, L. S., Colucci, W. S., & Cohen, R. J. (1988). Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. American Journal of Cardiology, 61(15), 1292–1299.
Schreiber, R. C., Hyatt‐Sachs, H., Bennett, T. A., & Zigmond, R. E. (1994). Galanin expression increases in adult rat sympathetic neurons after axotomy. Neuroscience, 60(1), 17–27.
Schwartz, P. J., Locati, E. H., Moss, A. J., Crampton, R. S., Trazzi, R., & Ruberti, U. (1991). Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome. A worldwide report. Circulation, 84(2), 503–511.
Schwartz, P. J., Priori, S. G., Spazzolini, C., Moss, A. J., Vincent, G. M., Napolitano, C., Denjoy, I., Guicheney, P., Breithardt, G., Keating, M. T., Towbin, J. A., Beggs, A. H., Brink, P., Wilde, A. A., Toivonen, L., Zareba, W., Robinson, J. L., Timothy, K. W., Corfield, V., … Bloise, R. (2001). Genotype‐phenotype correlation in the long‐QT syndrome: Gene‐specific triggers for life‐threatening arrhythmias. Circulation, 103(1), 89–95.
Schwartz, P. J., & Vanoli, E. (1981). Cardiac arrhythmias elicited by interaction between acute myocardial ischemia and sympathetic hyperactivity: A new experimental model for the study of antiarrhythmic drugs. Journal of Cardiovascular Pharmacology, 3(6), 1251–1259.
Schwartz, P. J., Vanoli, E., Zaza, A., & Zuanetti, G. (1985). The effect of antiarrhythmic drugs on life‐threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. American Heart Journal, 109(5 Pt 1), 937–948.
Scirica, B. M., Bhatt, D. L., Braunwald, E., Steg, P. G., Davidson, J., Hirshberg, B., Ohman, P., Frederich, R., Wiviott, S. D., & Hoffman, E. B. (2013). Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine, 369(14), 1317–1326.
Shah, R., Assis, F., Alugubelli, N., Okada, D. R., Cardoso, R., Shivkumar, K., & Tandri, H. (2019). Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: A systematic review. Heart Rhythm, 16(10), 1499–1505.
Shanks, J., Manou‐Stathopoulou, S., Lu, C.‐J., Li, D., Paterson, D. J., & Herring, N. (2013). Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. American Journal of Physiology‐Heart and Circulatory Physiology, 305(7), H980–H986.
Sharma, S., Littman, R., Tompkins, J., Arneson, D., Contreras, J., Dajani, A. H., Ang, K., Tsanhani, A., Sun, X., Jay, P. Y., Herzog, H., Yang, X., & Ajijola, O. A. (2023). Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling. Advance online publication. https://doi.org/10.1101/2023.01.18.524575
Shiferaw, Y., Aistrup, G. L., & Wasserstrom, J. A. (2012). Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovascular Research, 95(3), 265–268.
Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., Chattipakorn, S., KenKnight, B. H., & Chattipakorn, N. (2013). Low‐amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia‐reperfusion injury. Heart Rhythm, 10(11), 1700–1707.
Shivkumar, K., Ajijola, O. A., Anand, I., Armour, J. A., Chen, P. S., Esler, M., De Ferrari, G. M., Fishbein, M. C., Goldberger, J. J., & Harper, R. M. (2016). Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics. The Journal of Physiology, 594(14), 3911–3954.
Smith‐White, M. A., Herzog, H., & Potter, E. K. (2002). Role of neuropeptide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission. Regulatory Peptides, 103(2–3), 105–111.
Soeki, T., Kishimoto, I., Okumura, H., Tokudome, T., Horio, T., Mori, K., & Kangawa, K. (2005). C‐type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. Journal of the American College of Cardiology, 45(4), 608–616.
Sohaib, S. M., Chen, Z., Whinnett, Z. I., Bouri, S., Dickstein, K., Linde, C., Hayes, D. L., Manisty, C. H., & Francis, D. P. (2013). Meta‐analysis of symptomatic response attributable to the pacing component of cardiac resynchronization therapy. European Journal of Heart Failure, 15(12), 1419–1428.
Spindler, M., Engelhardt, S., Niebler, R., Wagner, H., Hein, L., Lohse, M. J., & Neubauer, S. (2003). Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in β1‐adrenergic receptor transgenic mice. Journal of Molecular and Cellular Cardiology, 35(4), 389–397.
Stadiotti, I., Di Bona, A., Pilato, C. A., Scalco, A., Guarino, A., Micheli, B., Casella, M., Tondo, C., Rizzo, S., Pilichou, K., Thiene, G., Frigo, A. C., Pompilio, G., Basso, C., Sommariva, E., Mongillo, M., & Zaglia, T. (2021). Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy. International Journal of Cardiology, 342, 94–102.
Starling, E. H. (1905). The Croonian Lectures. I. On the chemical correlation of the functions of the body. The Lancet, 166(4275), 339–341.
Stavrakis, S., Humphrey, M. B., Scherlag, B. J., Hu, Y., Jackman, W. M., Nakagawa, H., Lockwood, D., Lazzara, R., & Po, S. S. (2015). Low‐level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. Journal of the American College of Cardiology, 65(9), 867–875.
Stavrakis, S., Morris, L., Takashima Ayahiro, D., Elkholey, K., Van Wagoner David, R., & Ajijola Olujimi, A. (2020). Circulating neuropeptide Y as a biomarker for neuromodulation in atrial fibrillation. Journal of the American College of Cardiology: Clinical Electrophysiology, 6(12), 1575–1576.
Stingo, A. J., Clavell, A. L., Aarhus, L. L., & Burnett, J. C., Jr (1992). Cardiovascular and renal actions of C‐type natriuretic peptide. The American Journal of Physiology, 262(1 Pt 2), H308–H312.
Strömberg, I., Björklund, H., Melander, T., Rökaeus, A., Hökfelt, T., & Olson, L. (1987). Galanin‐immunoreactive nerves in the rat iris: Alterations induced by denervations. Cell and Tissue Research, 250(2), 267–275.
Study TAIREA. (1993). Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Lancet, 342(8875), 821–828.
Sun, S. Y., Wang, W., Zucker, I. H., & Schultz, H. D. (1999). Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: Role of nitric oxide. Journal of Applied Physiology (1985), 86(4), 1273–1282.
Szardien, S., Mollmann, H., Voss, S., Troidl, C., Rolf, A., Liebetrau, C., Rixe, J., Elsasser, A., Hamm, C. W., & Nef, H. M. (2011). Elevated serum levels of neuropeptide Y in stress cardiomyopathy. International Journal of Cardiology, 147(1), 155–157.
Tan, C. M. J., Green, P., Tapoulal, N., Lewandowski, A. J., Leeson, P., & Herring, N. (2018). The role of neuropeptide Y in cardiovascular health and disease. Frontiers in Physiology, 9, 1281.
Tapa, S., Wang, L., Francis Stuart, S. D., Wang, Z., Jiang, Y., Habecker, B. A., & Ripplinger, C. M. (2020). Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss. Scientific Reports, 10(1), 18801.
Thames, M. D., Kinugawa, T., Smith, M. L., & Dibner‐Dunlap, M. E. (1993). Abnormalities of baroreflex control in heart failure. Journal of the American College of Cardiology, 22, (4 Suppl A), 56A–60A.
Thornberry, N. A., & Gallwitz, B. (2009). Mechanism of action of inhibitors of dipeptidyl‐peptidase‐4 (DPP‐4). Best Practice & Research Clinical Endocrinology & Metabolism, 23(4), 479–486.
Tian, Y., Wittwer, E. D., Kapa, S., McLeod, C. J., Xiao, P., Noseworthy, P. A., Mulpuru, S. K., Deshmukh, A. J., Lee, H.‐C., Ackerman, M. J., Asirvatham, S. J., Munger, T. M., Liu, X.‐P., Friedman, P. A., & Cha, Y.‐M. (2019). Effective use of percutaneous stellate ganglion blockade in patients with electrical storm. Circulation: Arrhythmia and Electrophysiology, 12(9), e007118.
Tiller, C., Reindl, M., Holzknecht, M., Lechner, I., Troger, F., Oberhollenzer, F., von der Emde, S., Kremser, T., Mayr, A., Bauer, A., Metzler, B., & Reinstadler, S. J. (2024). Relation of plasma neuropeptide‐Y with myocardial function and infarct severity in acute ST‐elevation myocardial infarction. European Journal of Internal Medicine. Advance online publication. https://doi.org/10.1016/j.ejim.2024.03.027
Tomek, J., Hao, G., Tomkova, M., Lewis, A., Carr, C., Paterson, D. J., Rodriguez, B., Bub, G., & Herring, N. (2019). β‐adrenergic receptor stimulation and alternans in the border zone of a healed infarct: An ex vivo study and computational investigation of arrhythmogenesis. Frontiers in Physiology, 10, 350.
Townend, J. N., West, J. N., Davies, M. K., & Littler, W. A. (1992). Effect of quinapril on blood pressure and heart rate in congestive heart failure. The American Journal of Cardiology, 69(19), 1587–1590.
Tsien, R. W., Bean, B. P., Hess, P., Lansman, J. B., Nilius, B., & Nowycky, M. C. (1986). Mechanisms of calcium channel modulation by beta‐adrenergic agents and dihydropyridine calcium agonists. Journal of Molecular and Cellular Cardiology, 18(7), 691–710.
Tu, H., Liu, J., Zhang, D., Zheng, H., Patel, K. P., Cornish, K. G., Wang, W. Z., Muelleman, R. L., & Li, Y. L. (2014). Heart failure‐induced changes of voltage‐gated Ca2+ channels and cell excitability in rat cardiac postganglionic neurons. American Journal of Physiology‐Cell Physiology, 306(2), C132–C142.
van Weperen, V. Y. H., Hoang, J. D., Jani, N. R., Khaky, A., Herring, N., Smith, C., & Vaseghi, M. (2024). Circulating noradrenaline leads to release of neuropeptide Y from cardiac sympathetic nerve terminals via activation of β‐adrenergic receptors. The Journal of Physiology. Advance online publication. https://doi.org/10.1113/JP285945
Vanoli, E., De Ferrari, G. M., Stramba‐Badiale, M., Hull Jr S. S., Foreman R. D., & Schwartz P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research, 68(5), 1471–1481.
Vaseghi, M., Barwad, P., Malavassi Corrales, F. J., Tandri, H., Mathuria, N., Shah, R., Sorg, J. M., Gima, J., Mandal, K., Saenz Morales, L. C., Lokhandwala, Y., & Shivkumar, K. (2017). Cardiac sympathetic denervation for refractory ventricular arrhythmias. Journal of the American College of Cardiology, 69(25), 3070–3080.
Vaseghi, M., Gima, J., Kanaan, C., Ajijola, O. A., Marmureanu, A., Mahajan, A., & Shivkumar, K. (2014). Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long‐term follow‐up. Heart Rhythm, 11(3), 360–366.
Vaseghi, M., Lux, R. L., Mahajan, A., & Shivkumar, K. (2012). Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. American Journal of Physiology‐Heart and Circulatory Physiology, 302(9), H1838–H1846.
Vaseghi, M., & Shivkumar, K. (2008). The role of the autonomic nervous system in sudden cardiac death. Progress in Cardiovascular Diseases, 50(6), 404–419.
Vörös, I., Onódi, Z., Tóth, V., Gergely, T. G., Sághy, É., Görbe, A., Kemény, Á., Leszek, P., Helyes, Z., Ferdinandy, P., & Varga, Z. V. (2022). Saxagliptin cardiotoxicity in chronic heart failure: The role of DPP4 in the regulation of neuropeptide tone. Biomedicines, 10(7), 1573.
Wahlestedt, C., Yanaihara, N., & Håkanson, R. (1986). Evidence for different pre‐and post‐junctional receptors for neuropeptide Y and related peptides. Regulatory Peptides, 13(3–4), 307–318.
Wang, H. J., Wang, W., Cornish, K. G., Rozanski, G. J., & Zucker, I. H. (2014). Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension, 64(4), 745–755.
Wang, L., Henrich, M., Buckler, K. J., McMenamin, M., Mee, C. J., Sattelle, D. B., & Paterson, D. J. (2007). Neuronal nitric oxide synthase gene transfer decreases [Ca2+] i in cardiac sympathetic neurons. Journal of Molecular and Cellular Cardiology, 43(6), 717–725.
Wang, L., Li, D., Plested, C., Dawson, T., Teschemacher, A., & Paterson, D. (2006). Noradrenergic neuron‐specific overexpression of nNOS in cardiac sympathetic nerves decreases neurotransmission. Journal of Molecular and Cellular Cardiology, 41(2), 364–370.
Wang, M., Li, S., Zhou, X., Huang, B., Zhou, L., Li, X., Meng, G., Yuan, S., Wang, Y., Wang, Z., Wang, S., Yu, L., & Jiang, H. (2017). Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. International Journal of Cardiology, 248, 286–293.
Westfall, T. (2004). Prejunctional effects of neuropeptide Y and its role as a cotransmitter. Neuropeptide Y and Related Peptides, 137–183.
Westfall, T. C., Carpentier, S., Chen, X., Beinfeld, M. C., Naes, L., & Meldrum, M. J. (1987). Prejunctional and postjunctional effects of neuropeptide Y at the noradrenergic neuroeffector junction of the perfused mesenteric arterial bed of the rat. Journal of Cardiovascular Pharmacology, 10(6), 716–722.
Wilde, A. A., Bhuiyan, Z. A., Crotti, L., Facchini, M., De Ferrari, G. M., Paul, T., Ferrandi, C., Koolbergen, D. R., Odero, A., & Schwartz, P. J. (2008). Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. New England Journal of Medicine, 358(19), 2024–2029.
Wilson, C., McCarron, J. G., & Lee, M. D. (2022). William Bayliss and the enduring fascination of myogenic tone. The Journal of Physiology, 600(18), 4043–4044.
Wittstein, I. S., Thiemann, D. R., Lima, J. A., Baughman, K. L., Schulman, S. P., Gerstenblith, G., Wu, K. C., Rade, J. J., Bivalacqua, T. J., & Champion, H. C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. New England Journal of Medicine, 352(6), 539–548.
Wladyka, C. L., & Kunze, D. L. (2006). KCNQ/M‐currents contribute to the resting membrane potential in rat visceral sensory neurons. The Journal of Physiology, 575(Pt 1), 175–189.
Yagishita, D., Chui, R. W., Yamakawa, K., Rajendran, P. S., Ajijola, O. A., Nakamura, K., So, E. L., Mahajan, A., Shivkumar, K., & Vaseghi, M. (2015). Sympathetic nerve stimulation, not circulating norepinephrine, modulates T‐peak to T‐end interval by increasing global dispersion of repolarization. Circulation: Arrhythmia and Electrophysiology, 8(1), 174–185.
Ye, J., Xiao, R., Wang, X., He, R., Liu, Z., & Gao, J. (2022). Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats. Brihanmumbai Municipal Corporation Cardiovascular Disorders, 22(1), 544.
Yoshie, K., Rajendran, P. S., Massoud, L., Mistry, J., Swid, M. A., Wu, X., Sallam, T., Zhang, R., Goldhaber, J. I., & Salavatian, S. (2020). Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. Joint Commission International Insight, 5(3), e124477.
Yu, L., Huang, B., Po, S. S., Tan, T., Wang, M., Zhou, L., Meng, G., Yuan, S., Zhou, X., & Li, X. (2017). Low‐level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST‐segment elevation myocardial infarction: A proof‐of‐concept study. Journal of the American College of Cardiology: Cardiovascular Interventions, 10(15), 1511–1520.
Yusuf, S., Pitt, B., Davis, C. E., Hood, W. B., & Cohn, J. N. (1991). Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. New England Journal of Medicine, 325(5), 293–302.
Zaccolo, M., & Movsesian, M. A. (2007). cAMP and cGMP signaling cross‐talk: Role of phosphodiesterases and implications for cardiac pathophysiology. Circulation Research, 100(11), 1569–1578.
Zannad, F., De Ferrari, G. M., Tuinenburg, A. E., Wright, D., Brugada, J., Butter, C., Klein, H., Stolen, C., Meyer, S., Stein, K. M., Ramuzat, A., Schubert, B., Daum, D., Neuzil, P., Botman, C., Castel, M. A., D'Onofrio, A., Solomon, S. D., Wold, N., & Ruble, S. B. (2015). Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR‐HF) randomized controlled trial. European Heart Journal, 36(7), 425–433.
Zeppenfeld, K., Tfelt‐Hansen, J., de Riva, M., Winkel, B. G., Behr, E. R., Blom, N. A., Charron, P., Corrado, D., Dagres, N., de Chillou, C., Eckardt, L., Friede, T., Haugaa, K. H., Hocini, M., Lambiase, P. D., Marijon, E., Merino, J. L., Peichl, P., Priori, S. G., … Volders, P. G. A. (2022). 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal, 43(40), 3997–4126.
Zeuzem, S., Olbrich, H. G., Haak, T., & Jungmann, E. (1990). In vivo evidence that human atrial natriuretic factor‐(99–126) (hANF) stimulates parasympathetic activity in man. European Journal of Clinical Pharmacology, 39(1), 77–79.
Zhang, D., Hu, W., Tu, H., Hackfort, B. T., Duan, B., Xiong, W., Wadman, M. C., & Li, Y.‐L. (2021). Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure. Basic Research in Cardiology, 116(1), 28.
Zhang, R., Niu, H., Kang, X., Ban, T., Hong, H., & Ai, J. (2015). Long‐term administration of neuropeptide Y in the subcutaneous infusion results in cardiac dysfunction and hypertrophy in rats. Cellular Physiology and Biochemistry, 37(1), 94–104.
Zhang, W. H., Zhou, Q. N., Lu, Y. M., Li, Y. D., Zhang, L., Zhang, J. H., Xing, Q., Lv, W. K., Cheng, X. C., Zhang, G. G., Wang, X. S., Gu, Q., Lou, X., Guli, B., Tang, B. P., & Zhou, X. H. (2018). Renal denervation reduced ventricular arrhythmia after myocardial infarction by inhibiting sympathetic activity and remodeling. Journal of the American Heart Association, 7(20), e009938.
Zhang, Y., Popovic, Z. B., Bibevski, S., Fakhry, I., Sica, D. A., Van Wagoner, D. R., & Mazgalev, T. N. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high‐rate pacing model. Circulation: Heart Failure, 2(6), 692–699.
Zhouting, H., Wangyu, L., Guoqing, Z., Chen, L., & Kai, L. (2023). Postoperative stellate ganglion block to reduce myocardial injury after laparoscopic radical resection for colorectal cancer: Protocol for a randomised trial. British medical journal Open, 13(11), e069183.
Zhu, G. Q., Gao, L., Li, Y., Patel, K. P., Zucker, I. H., & Wang, W. (2004). AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. American Journal of Physiology‐Heart and Circulatory Physiology, 287(4), H1828–H1835.
Zhu, G. Q., Zucker, I. H., & Wang, W. (2002). Central AT1 receptors are involved in the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Basic Research in Cardiology, 97(4), 320–326.
Ziegler, K. A., Ahles, A., Wille, T., Kerler, J., Ramanujam, D., & Engelhardt, S. (2017). Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovascular Research, 114(2), 291–299.
Zucker, I., & Wang, W. (1991). Reflex control of renal sympathetic nervous activity in heart failure. Herz, 16(2), 82–91.
Zucker, I. H., Patel, K. P., & Schultz, H. D. (2012). Neurohumoral stimulation. Heart Failure Clinics, 8(1), 87–99.
Zucker, I. H., Schultz, H. D., Li, Y. F., Wang, Y., Wang, W., & Patel, K. P. (2004). The origin of sympathetic outflow in heart failure: The roles of angiotensin II and nitric oxide. Progress in Biophysics and Molecular Biology, 84(2–3), 217–232.
Zukowska, Z., Pons, J., Lee, E. W., & Li, L. (2003). Neuropeptide Y: A new mediator linking sympathetic nerves, blood vessels and immune system? Canadian Journal of Physiology and Pharmacology, 81(2), 89–94.