Easy-to-actuate multi-compatible truss structures with prescribed reconfiguration.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
07 Jun 2024
07 Jun 2024
Historique:
received:
30
10
2023
accepted:
27
05
2024
medline:
8
6
2024
pubmed:
8
6
2024
entrez:
7
6
2024
Statut:
epublish
Résumé
Multi-stable structures attract great interest because they possess special energy landscapes with domains of attraction around the stable states. Consequently, multi-stable structures have the potential to achieve prescribed reconfiguration with only a few lightweight actuators (such as shape-memory alloy springs), and do not need constant actuation to be locked at a stable state. However, most existing multi-stability designs are based on assembling bi-stable unit cells, which contain multitudes of distractive stable states, diminishing the feasibility of reconfiguration actuation. Another type is by introducing prestress together with kinematic symmetry or nonlinearity to achieve multi-stability, but the resultant structure often suffers the lack of stiffness. To help address these challenges, we firstly introduce the constraints that a truss structure is simultaneously compatible at multiple (more than two) prescribed states. Then, we solve for the design of multi-stable truss structures, named multi-compatible structures in this paper, where redundant stable states are limited. Secondly, we explore minimum energy paths connecting the designed stable states, and compute for a simple and inaccurate pulling actuation guiding the structure to transform along the computed paths. Finally, we fabricated four prototypes to demonstrate that prescribed reconfigurations with easy-actuation have been achieved and applied a quadra-stable structure to the design of a variable stiffness gripper. Altogether, our full-cycle design approach contains multi-stability design, stiffness design, minimum-energy-path finding, and pulling actuation design, which highlights the potential for designing morphing structures with lightweight actuation for practical applications.
Identifiants
pubmed: 38849357
doi: 10.1038/s41467-024-49210-3
pii: 10.1038/s41467-024-49210-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4886Informations de copyright
© 2024. The Author(s).
Références
Forterre, Y. et al. How the Venus flytrap snaps. Nature 433, 421–425 (2005).
doi: 10.1038/nature03185
pubmed: 15674293
Daynes, S., Weaver, P. M. & Trevarthen, J. A. A morphing composite air inlet with multiple stable shapes. J. Intell. Mater. Syst. Struct. 22, 961–973 (2011).
doi: 10.1177/1045389X11399943
Fu, H. et al. Morphable 3D mesostructures and microelectronic devices by multi-stable buckling mechanics. Nat. Mater. 17, 268–276 (2018).
doi: 10.1038/s41563-017-0011-3
pubmed: 29379201
pmcid: 5877475
Melancon, D. et al. Multi-stable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).
doi: 10.1038/s41586-021-03407-4
pubmed: 33883736
Shengxi, Z. et al. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016).
doi: 10.1016/j.jsv.2016.03.017
Hua, J., Lei, H., Gao, C. F., Guo, X. & Fang, D. Parameters analysis and optimization of a typical multistable mechanical metamaterial. Extrem. Mech. Lett. 35, 100640 (2020).
doi: 10.1016/j.eml.2020.100640
Chen, T., Bilal, O. R., Shea, K. & Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. 115, 5698–5702 (2018).
doi: 10.1073/pnas.1800386115
pubmed: 29765000
pmcid: 5984517
Fang, H., Wang, K. W. & Li, S. Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extrem. Mech. Lett. 17, 7–15 (2017).
doi: 10.1016/j.eml.2017.09.008
Zhang, H., Wu, J., Fang, D. & Zhang, Y. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation. Sci. Adv. 7, eabf1966 (2021).
doi: 10.1126/sciadv.abf1966
pubmed: 33627434
pmcid: 7904272
Chen, T. & Shea, K. Computational design of multi-stable, reconfigurable surfaces. Mater. Des. 205, 109688 (2021).
doi: 10.1016/j.matdes.2021.109688
Chen, T., Panetta, J., Schnaubelt, M. & Pauly, M. Bistable auxetic surface structures. ACM Trans. Graph. 40, 1–9 (2021).
Wang, B., Seffen, K. A. & Guest, S. D. Folded strains of a bistable composite tape-spring. Int. J. Solids Struct. 233, 111221 (2021).
doi: 10.1016/j.ijsolstr.2021.111221
Pirrera, A., Lachenal, X., Daynes, S., Weaver, P. M. & Chenchiah, I. V. Multi-stable cylindrical lattices. J. Mech. Phys. Solids 61, 2087–2107 (2013).
doi: 10.1016/j.jmps.2013.07.008
Risso, G. & Ermanni, P. Multi-stability of fiber reinforced polymer frames with different geometries. Compos. Struct. 313, 116958 (2023).
doi: 10.1016/j.compstruct.2023.116958
Risso, G., Sakovsky, M. & Ermanni, P. A Highly Multi‐Stable meta‐structure via anisotropy for large and reversible shape transformation. Adv. Sci. 9, 2202740 (2022).
doi: 10.1002/advs.202202740
Zhang, R., Auzinger, T. & Bickel, B. Computational design of planar multistable compliant structures. ACM Trans. Graph. 40, 1–16 (2021).
doi: 10.1145/3478513.3480500
Jensen, B. D. & Howell, L. L. Identification of compliant pseudo-rigid-body four-link mechanism configurations resulting in bistable behavior. J. Mech. Des. 125, 701–708 (2003).
doi: 10.1115/1.1625399
Su, H. J. & McCarthy, J. M. Synthesis of bistable compliant four-bar mechanisms using polynomial homotopy. J. Mech. Des. 129, 1094–1098 (2007).
doi: 10.1115/1.2757192
Zhang, X. et al. Kirigami-based metastructures with programmable multistability. Proc. Natl Acad. Sci. 119, e2117649119 (2022).
doi: 10.1073/pnas.2117649119
pubmed: 35254898
pmcid: 8931353
Li, Y. & Pellegrino, S. A theory for the design of multi-stable morphing structures. J. Mech. Phys. Solids 136, 103772 (2020).
doi: 10.1016/j.jmps.2019.103772
Dang, X., Feng, F., Duan, H. & Wang, J. Theorem on the compatibility of spherical kirigami tessellations. Phys. Rev. Lett. 128, 035501 (2022).
doi: 10.1103/PhysRevLett.128.035501
pubmed: 35119892
Zhou, H., Grasinger, M., Buskohl, P. & Bhattacharya, K. Low energy fold paths in multistable origami structures. Int. J. Solids Struct. 265, 112125 (2023).
doi: 10.1016/j.ijsolstr.2023.112125
Mukherjee, A., Risso, G. & Ermanni, P. Quantifying the strength of stability of multi-stable structures: a new design perspective. Thin-Walled Struct. 189, 110921 (2023).
doi: 10.1016/j.tws.2023.110921
Song, K., Scarpa, F. & Schenk, M. Identifying the energy threshold for multistable tensegrity structures using a Mountain Pass algorithm. Int. J. Solids Struct. 283, 112472 (2023).
doi: 10.1016/j.ijsolstr.2023.112472
Wan, G. et al. Finding transition state and minimum energy path of bistable elastic continua through energy landscape explorations. J. Mech. Phys. Solids 183, 105503 (2024).
doi: 10.1016/j.jmps.2023.105503
Herbol, H. C., Stevenson, J. & Clancy, P. Computational implementation of nudged elastic band, rigid rotation, and corresponding force optimization. J. Chem. Theory Comput. 13, 3250–3259 (2017).
doi: 10.1021/acs.jctc.7b00360
pubmed: 28621935
Hunt, K. H. Kinematic Geometry of Mechanisms (Oxford University Press, London, 1978).
Liu, Y. et al. Multistable shape-reconfigurable metawire in 3D space. Extrem. Mech. Lett. 50, 101535 (2022).
doi: 10.1016/j.eml.2021.101535
Li, Y., Chandra, A., Dorn, C. J. & Lang, R. J. Reconfigurable surfaces employing linear-rotational and bistable-translational (LRBT) joints. Int. J. Solids Struct. 207, 22–41 (2020).
doi: 10.1016/j.ijsolstr.2020.09.029
Wu, H. & Fang, H. Tuning of multi-stability profile and transition sequence of stacked miura-origami metamaterials. Acta Mech. Solid. Sin. 36, 554–568 (2023).
doi: 10.1007/s10338-023-00391-2
Sumi, S., Boehm, V. & Zimmermann, K. A multistable tensegrity structure with a gripper application. Mech. Mach. Theory 114, 204–217 (2017).
doi: 10.1016/j.mechmachtheory.2017.04.005
Osorio, J. C., Morgan, H. & Arrieta, A. F. Programmable multistable soft grippers. 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 525–530 (2022).
Lerner, E., Zhang, H. & Zhao, J. Design and experimentation of a variable stiffness bistable gripper. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9925–9931. IEEE (2020).
Liu, Y. et al. A soft and bistable gripper with adjustable energy barrier for fast capture in space. Soft Robot. 10, 77–87 (2023).
doi: 10.1089/soro.2021.0147
pubmed: 35447038