The participation of ferroptosis in fibrosis of the heart and kidney tissues in Dahl salt-sensitive hypertensive rats.
Ferroptosis
Myocardial fibrosis
Renal fibrosis
Salt-sensitive hypertension
Target organ damage
Journal
American journal of hypertension
ISSN: 1941-7225
Titre abrégé: Am J Hypertens
Pays: United States
ID NLM: 8803676
Informations de publication
Date de publication:
08 Jun 2024
08 Jun 2024
Historique:
received:
23
02
2024
medline:
8
6
2024
pubmed:
8
6
2024
entrez:
8
6
2024
Statut:
aheadofprint
Résumé
Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot. Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group. Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.
Sections du résumé
BACKGROUND
BACKGROUND
Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats.
METHODS
METHODS
Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot.
RESULTS
RESULTS
Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group.
CONCLUSION
CONCLUSIONS
Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.
Identifiants
pubmed: 38850192
pii: 7689947
doi: 10.1093/ajh/hpae076
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of American Journal of Hypertension, Ltd. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.