Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 Jun 2024
Historique:
received: 07 01 2024
accepted: 02 06 2024
medline: 9 6 2024
pubmed: 9 6 2024
entrez: 8 6 2024
Statut: epublish

Résumé

Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 μm) and 26.3% over an aperture area of 16 cm

Identifiants

pubmed: 38851760
doi: 10.1038/s41467-024-49351-5
pii: 10.1038/s41467-024-49351-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4907

Informations de copyright

© 2024. The Author(s).

Références

Green, M. et al. Solar cell efficiency tables (version 63). Prog. Photovolt. Res. Appl. 32, 3–13 (2024).
doi: 10.1002/pip.3750
Tockhorn, P. et al. Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221 (2022).
pubmed: 36280763 pmcid: 9646483 doi: 10.1038/s41565-022-01228-8
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1131–1134 (2020).
doi: 10.1126/science.aaz3691
Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).
pubmed: 35737811 doi: 10.1126/science.abn8910
Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288 (2016).
pubmed: 27607731 doi: 10.1364/OE.24.0A1288
Schneider, B. et al. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express 22, A1422 (2014).
pubmed: 25607299 doi: 10.1364/OE.22.0A1422
Luo, X. et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023).
doi: 10.1002/adma.202207883
Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).
pubmed: 29891887 doi: 10.1038/s41563-018-0115-4
Roß, M. et al. Co‐evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).
doi: 10.1002/aenm.202101460
Xu, Y. et al. Octahedral tilt enables efficient and stable fully vapor‐deposited perovskite/silicon tandem cells. Adv. Funct. Mater. 34, 2312037 (2024).
doi: 10.1002/adfm.202312037
Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, 1–13 (2024).
doi: 10.1126/science.adh3849
Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).
pubmed: 37410835 doi: 10.1126/science.adg0091
Xu, Q. et al. Diffusible capping layer enabled homogeneous crystallization and component distribution of hybrid sequential deposited perovskite. Adv. Mater. 36, 2308692 (2024).
doi: 10.1002/adma.202308692
Xu, Q. et al. Conductive passivator for efficient monolithic perovskite/silicon tandem solar cell on commercially textured silicon. Adv. Energy Mater. 12, 2202404 (2022).
doi: 10.1002/aenm.202202404
Luo, H. et al. Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells. ACS Energy Lett. 8, 4993–5002 (2023).
doi: 10.1021/acsenergylett.3c02002
Mao, L. et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency.Adv. Mater. 34, 2206193 (2022).
doi: 10.1002/adma.202206193
Li, Y. et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11, 2102046 (2021).
doi: 10.1002/aenm.202102046
Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).
pubmed: 29123060 doi: 10.1126/science.aam6323
Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).
pubmed: 30237326 doi: 10.1126/science.aat8235
Raval, P. et al. Understanding instability in formamidinium lead halide perovskites: kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett. 7, 1534–1543 (2022).
doi: 10.1021/acsenergylett.2c00140
Ho, K. et al. Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light. ACS Energy Lett. 6, 934–940 (2021).
doi: 10.1021/acsenergylett.0c02247
Caddeo, C. et al. Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water. ACS Nano 11, 9183–9190 (2017).
pubmed: 28783296 doi: 10.1021/acsnano.7b04116
Heo, S. et al. Origins of high performance and degradation in the mixed perovskite solar cells. Adv. Mater. 31, 1805438 (2019).
doi: 10.1002/adma.201805438
Fong, P. W. K. et al. Printing high-efficiency perovskite solar cells in high-humidity ambient environment—an in situ guided investigation. Adv. Sci. 8, 2003359 (2021).
doi: 10.1002/advs.202003359
Zeng, Q. et al. Tailoring particle size of PbI2 towards efficient perovskite solar cells under ambient air conditions. Chem. Commun. 59, 5269–5272 (2023).
doi: 10.1039/D3CC00972F
Cheng, S. et al. What happens when halide perovskites meet with water? J. Phys. Chem. Lett. 13, 2281–2290 (2022).
pubmed: 35244396 doi: 10.1021/acs.jpclett.2c00166
Younas, M. et al. Ambient-environment processed perovskite solar cells: A review. Mater. Today Phys. 21, 100557 (2021).
doi: 10.1016/j.mtphys.2021.100557
Yan, L. et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat. Energy 8, 1158–1167 (2023).
doi: 10.1038/s41560-023-01358-w
Wu, Z. et al. Scalable two-step production of high-efficiency perovskite solar cells and modules. Sol. RRL 7, 2200571 (2023).
doi: 10.1002/solr.202200571
Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).
doi: 10.1002/adma.201703852
You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).
doi: 10.1063/1.4901510
Shao, W. et al. Modulation of nucleation and crystallization in PbI 2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16, 252–264 (2023).
doi: 10.1039/D2EE03342A
Wang, H. et al. Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule 6, 2869–2884 (2022).
doi: 10.1016/j.joule.2022.10.001
Liu, K. et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 13, 4891 (2022).
pubmed: 35986009 pmcid: 9391447 doi: 10.1038/s41467-022-32482-y
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).
doi: 10.1038/s41566-019-0398-2
Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).
pubmed: 35901131 doi: 10.1126/science.abp8873
Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).
doi: 10.1039/C9EE00751B
Yu, X. et al. Moisture control enables high-performance sprayed perovskite solar cells under ambient conditions. Mater. Today Energy 37, 101391 (2023).
doi: 10.1016/j.mtener.2023.101391
Wang, G. et al. Thermal‐radiation‐driven ultrafast crystallization of perovskite films under heavy humidity for efficient inverted solar cells.Adv. Mater. 34, 2205143 (2022).
doi: 10.1002/adma.202205143
Wang, G. et al. Liberating researchers from the glovebox: a universal thermal radiation protocol toward efficient fully air‐processed perovskite solar cells. Sol. RRL 3, 1800324 (2019).
doi: 10.1002/solr.201800324
George, W. Databook of Solvents 2nd edn (Elsevier, 2019).
Zhuang, B. et al. Like dissolves like: a first-principles theory for predicting liquid miscibility and mixture dielectric constant. Sci. Adv. 7, 1–7 (2021).
doi: 10.1126/sciadv.abe7275
Chen, S. et al. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, 1–6 (2021).
Meng, H. et al. Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy https://doi.org/10.1038/s41560-024-01471-4 (2024).
doi: 10.1038/s41560-024-01471-4
Fu, Y. et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137, 5810–5818 (2015).
pubmed: 25871732 doi: 10.1021/jacs.5b02651
Xu, Y. et al. The effect of humidity upon the crystallization process of two-step spin-coated organic-inorganic perovskites. ChemPhysChem 17, 112–118 (2016).
pubmed: 26593743 doi: 10.1002/cphc.201500844
Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).
pubmed: 38386724 doi: 10.1126/science.adj6088
Siegrist, S. et al. Triple-cation perovskite solar cells fabricated by a hybrid PVD/blade coating process using green solvents. J. Mater. Chem. A 9, 26680–26687 (2021).
doi: 10.1039/D1TA07579A
Xu, K. et al. Slot-die coated triple-halide perovskites for efficient and scalable perovskite/silicon tandem solar cells.ACS Energy Lett. 7, 3600–3611 (2022).
pubmed: 36277135 pmcid: 9578656 doi: 10.1021/acsenergylett.2c01506
Zhang, S. et al. The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv. Mater. 31, 1901090 (2019).
doi: 10.1002/adma.201901090
Caprioglio, P. et al. On the relation between the open‐circuit voltage and quasi‐fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).
doi: 10.1002/aenm.201901631
Liu, Z. et al. Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13, 2203230 (2023).
doi: 10.1002/aenm.202203230
Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).
doi: 10.1016/j.joule.2021.11.003
Du, M. et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931–1943 (2022).
doi: 10.1016/j.joule.2022.06.026
Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018).
doi: 10.1038/s41560-018-0153-9
Subbiah, A. S. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 5, 3034–3040 (2020).
doi: 10.1021/acsenergylett.0c01297

Auteurs

Xuntian Zheng (X)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Wenchi Kong (W)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China. kongwenchi@nju.edu.cn.

Jin Wen (J)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Jiajia Hong (J)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Haowen Luo (H)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Rui Xia (R)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Zilong Huang (Z)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Xin Luo (X)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Zhou Liu (Z)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Hongjiang Li (H)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Hongfei Sun (H)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Yurui Wang (Y)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Chenshuaiyu Liu (C)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Pu Wu (P)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Han Gao (H)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Manya Li (M)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Anh Dinh Bui (AD)

Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, NSW, Australia.

Yi Mo (Y)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Xueling Zhang (X)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Guangtao Yang (G)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Yifeng Chen (Y)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Zhiqiang Feng (Z)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.

Hieu T Nguyen (HT)

Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, NSW, Australia.

Renxing Lin (R)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Ludong Li (L)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.

Jifan Gao (J)

State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China. jifan.gao@trinasolar.com.

Hairen Tan (H)

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China. hairentan@nju.edu.cn.

Classifications MeSH