Associations of childhood BMI, general and visceral fat mass with metabolite profiles at school-age.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
08 Jun 2024
Historique:
received: 23 01 2024
accepted: 30 05 2024
revised: 22 05 2024
medline: 9 6 2024
pubmed: 9 6 2024
entrez: 8 6 2024
Statut: aheadofprint

Résumé

Childhood obesity increases metabolic disease risk. Underlying mechanisms remain unknown. We examined associations of body mass index (BMI), total body fat mass, and visceral fat mass with serum metabolites at school-age, and explored whether identified metabolites improved the identification of children at risk of a metabolically unhealthy phenotype. We performed a cross-sectional analysis among 497 children with a mean age of 9.8 (95% range 9.1, 10.6) years, participating in a population-based cohort study. We measured BMI, total body fat mass using DXA, and visceral fat mass using MRI. Serum concentrations of amino-acids, non-esterified-fatty-acids, phospholipids, and carnitines were determined using LC-MS/MS. Children were categorized as metabolically healthy or metabolically unhealthy, according to BMI, blood pressure, lipids, glucose, and insulin levels. Higher BMI and total body fat mass were associated with altered concentrations of branched-chain amino-acids, essential amino-acids, and free carnitines. Higher BMI was also associated with higher concentrations of aromatic amino-acids and alkyl-lysophosphatidylcholines (FDR-corrected p-values < 0.05). The strongest associations were present for Lyso.PC.a.C14.0 and SM.a.C32.2 (FDR-corrected p-values < 0.01). Higher visceral fat mass was only associated with higher concentrations of 6 individual metabolites, particularly Lyso.PC.a.C14.0, PC.aa.C32.1, and SM.a.C32.2. We selected 15 metabolites that improved the prediction of a metabolically unhealthy phenotype, compared to BMI only (AUC: BMI: 0.59 [95% CI 0.47,0.71], BMI + Metabolites: 0.91 [95% CI 0.85,0.97]). An adverse childhood body fat profile, characterized by higher BMI and total body fat mass, is associated with metabolic alterations, particularly in amino acids, phospholipids, and carnitines. Fewer associations were present for visceral fat mass. We identified a metabolite profile that improved the identification of impaired cardiometabolic health in children, compared to BMI only.

Sections du résumé

BACKGROUND BACKGROUND
Childhood obesity increases metabolic disease risk. Underlying mechanisms remain unknown. We examined associations of body mass index (BMI), total body fat mass, and visceral fat mass with serum metabolites at school-age, and explored whether identified metabolites improved the identification of children at risk of a metabolically unhealthy phenotype.
METHODS METHODS
We performed a cross-sectional analysis among 497 children with a mean age of 9.8 (95% range 9.1, 10.6) years, participating in a population-based cohort study. We measured BMI, total body fat mass using DXA, and visceral fat mass using MRI. Serum concentrations of amino-acids, non-esterified-fatty-acids, phospholipids, and carnitines were determined using LC-MS/MS. Children were categorized as metabolically healthy or metabolically unhealthy, according to BMI, blood pressure, lipids, glucose, and insulin levels.
RESULTS RESULTS
Higher BMI and total body fat mass were associated with altered concentrations of branched-chain amino-acids, essential amino-acids, and free carnitines. Higher BMI was also associated with higher concentrations of aromatic amino-acids and alkyl-lysophosphatidylcholines (FDR-corrected p-values < 0.05). The strongest associations were present for Lyso.PC.a.C14.0 and SM.a.C32.2 (FDR-corrected p-values < 0.01). Higher visceral fat mass was only associated with higher concentrations of 6 individual metabolites, particularly Lyso.PC.a.C14.0, PC.aa.C32.1, and SM.a.C32.2. We selected 15 metabolites that improved the prediction of a metabolically unhealthy phenotype, compared to BMI only (AUC: BMI: 0.59 [95% CI 0.47,0.71], BMI + Metabolites: 0.91 [95% CI 0.85,0.97]).
CONCLUSIONS CONCLUSIONS
An adverse childhood body fat profile, characterized by higher BMI and total body fat mass, is associated with metabolic alterations, particularly in amino acids, phospholipids, and carnitines. Fewer associations were present for visceral fat mass. We identified a metabolite profile that improved the identification of impaired cardiometabolic health in children, compared to BMI only.

Identifiants

pubmed: 38851839
doi: 10.1038/s41366-024-01558-8
pii: 10.1038/s41366-024-01558-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7:231–40.
pubmed: 30704950 pmcid: 7360432 doi: 10.1016/S2213-8587(19)30026-9
Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147–52.
pubmed: 30529454 doi: 10.1016/j.metabol.2018.12.001
Vukovic R, Dos Santos TJ, Ybarra M, Atar M. Children with metabolically healthy obesity: a review. Front Endocrinol (Lausanne). 2019;10:865.
pubmed: 31920976 doi: 10.3389/fendo.2019.00865
Handakas E, Lau CH, Alfano R, Chatzi VL, Plusquin M, Vineis P, et al. A systematic review of metabolomic studies of childhood obesity: state of the evidence for metabolic determinants and consequences. Obes Rev. 2022;23:e13384.
pubmed: 34797026 doi: 10.1111/obr.13384
Prentice AM, Jebb SA. Beyond body mass index. Obes Rev. 2001;2:141–7.
pubmed: 12120099 doi: 10.1046/j.1467-789x.2001.00031.x
Kelishadi R, Mirmoghtadaee P, Najafi H, Keikha M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J Res Med Sci. 2015;20:294–307.
pubmed: 26109978 pmcid: 4468236 doi: 10.4103/1735-1995.156179
Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M, et al. Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation. 2016;134:1629–36.
pubmed: 27756781 doi: 10.1161/CIRCULATIONAHA.116.022993
Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31:1243–64.
pubmed: 28070760 doi: 10.1007/s10654-016-0224-9
Fredriks AM, van Buuren S, Wit JM, Verloove-Vanhorick SP. Body index measurements in 1996-7 compared with 1980. Arch Dis Child. 2000;82:107–12.
pubmed: 10648362 pmcid: 1718204 doi: 10.1136/adc.82.2.107
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94.
pubmed: 22715120 doi: 10.1111/j.2047-6310.2012.00064.x
Gishti O, Gaillard R, Manniesing R, Abrahamse-Berkeveld M, van der Beek EM, Heppe DH, et al. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children. J Clin Endocrinol Metab. 2014;99:2557–66.
pubmed: 24712569 doi: 10.1210/jc.2013-4345
Santos S, Monnereau C, Felix JF, Duijts L, Gaillard R, Jaddoe VWV. Maternal body mass index, gestational weight gain, and childhood abdominal, pericardial, and liver fat assessed by magnetic resonance imaging. Int J Obes (Lond). 2019;43:581–93.
pubmed: 30232419 doi: 10.1038/s41366-018-0186-y
VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body’s fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990;52:953–9.
pubmed: 2239792 doi: 10.1093/ajcn/52.6.953
Wells JC, Cole TJ, steam As. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes Relat Metab Disord. 2002;26:947–52.
pubmed: 12080448 doi: 10.1038/sj.ijo.0802027
Kruithof CJ, Kooijman MN, van Duijn CM, Franco OH, de Jongste JC, Klaver CC, et al. The generation R study: Biobank update 2015. Eur J Epidemiol. 2014;29:911–27.
pubmed: 25527369 doi: 10.1007/s10654-014-9980-6
Voerman E, Jaddoe VWV, Uhl O, Shokry E, Horak J, Felix JF, et al. A population-based resource for intergenerational metabolomics analyses in pregnant women and their children: the Generation R Study. Metabolomics. 2020;16:43.
pubmed: 32206914 pmcid: 7089886 doi: 10.1007/s11306-020-01667-1
Hellmuth C, Uhl O, Standl M, Demmelmair H, Heinrich J, Koletzko B, et al. Cord blood metabolome is highly associated with birth weight, but less predictive for later weight development. Obes Facts. 2017;10:85–100.
pubmed: 28376503 pmcid: 5644937 doi: 10.1159/000453001
IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations 1983. Eur J Biochem. 1984;138:9–37.
doi: 10.1111/j.1432-1033.1984.tb07877.x
Uhl O, Fleddermann M, Hellmuth C, Demmelmair H, Koletzko B. Phospholipid species in newborn and 4-month-old infants after consumption of different formulas or breast milk. PLoS One. 2016;11:e0162040.
pubmed: 27571269 pmcid: 5003354 doi: 10.1371/journal.pone.0162040
Hellmuth C, Weber M, Koletzko B, Peissner W. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem. 2012;84:1483–90.
pubmed: 22224852 doi: 10.1021/ac202602u
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8:663.
pubmed: 29330539 pmcid: 5766532 doi: 10.1038/s41598-017-19120-0
Wong SN, Tz Sung RY, Leung LC. Validation of three oscillometric blood pressure devices against auscultatory mercury sphygmomanometer in children. Blood Press Monit. 2006;11:281–91.
pubmed: 16932037 doi: 10.1097/01.mbp.0000209082.09623.b4
Damanhoury S, Newton AS, Rashid M, Hartling L, Byrne JLS, Ball GDC. Defining metabolically healthy obesity in children: a scoping review. Obes Rev. 2018;19:1476–91.
pubmed: 30156016 doi: 10.1111/obr.12721
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.
pubmed: 3203132 doi: 10.2307/2531595
Mansell T, Magnussen CG, Nuotio J, Laitinen TT, Harcourt BE, Bekkering S, et al. Decreasing severity of obesity from early to late adolescence and young adulthood associates with longitudinal metabolomic changes implicated in lower cardiometabolic disease risk. Int J Obes (Lond). 2022;46:646–54.
pubmed: 34987202 doi: 10.1038/s41366-021-01034-7
De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, Vanhaecke L. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol Med. 2021;27:145.
pubmed: 34742239 pmcid: 8571978 doi: 10.1186/s10020-021-00394-0
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: chimeras in structure and function. Int J Mol Sci. 2022;23:11948.
pubmed: 36233252 pmcid: 9570378 doi: 10.3390/ijms231911948
Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208:10–8.
pubmed: 19570538 doi: 10.1016/j.atherosclerosis.2009.05.029
Liu J, Fox CS, Hickson D, Bidulescu A, Carr JJ, Taylor HA. Fatty liver, abdominal visceral fat, and cardiometabolic risk factors: the Jackson Heart Study. Arterioscler Thromb Vasc Biol. 2011;31:2715–22.
pubmed: 21885852 pmcid: 3228266 doi: 10.1161/ATVBAHA.111.234062
Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obes (Silver Spring). 2010;18:2191–8.
doi: 10.1038/oby.2010.59
Hu HH, Nayak KS, Goran MI. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obes Rev. 2011;12:e504–15.
pubmed: 21348916 pmcid: 3079791 doi: 10.1111/j.1467-789X.2010.00824.x
Gishti O, Gaillard R, Durmus B, Abrahamse M, van der Beek EM, Hofman A, et al. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res. 2015;77:710–8.
pubmed: 25665058 doi: 10.1038/pr.2015.29
Hiuge-Shimizu A, Kishida K, Funahashi T, Ishizaka Y, Oka R, Okada M, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med. 2012;44:82–92.
pubmed: 20964583 doi: 10.3109/07853890.2010.526138
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.
pubmed: 17576866 doi: 10.1161/CIRCULATIONAHA.106.675355
Papandreou C, García-Gavilán J, Camacho-Barcia L, Hansen TT, Sjödin A, Harrold JA, et al. Circulating metabolites associated with body fat and lean mass in adults with overweight/obesity. Metabolites. 2021;11:317.
pubmed: 34068443 pmcid: 8153621 doi: 10.3390/metabo11050317
Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, et al. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015;309:E736–46.
pubmed: 26306599 doi: 10.1152/ajpendo.00231.2015
Boone S, Mook-Kanamori D, Rosendaal F, den Heijer M, Lamb H, de Roos A, et al. Metabolomics: a search for biomarkers of visceral fat and liver fat content. Metabolomics. 2019;15:139.
pubmed: 31587110 pmcid: 6778586 doi: 10.1007/s11306-019-1599-x
Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected]. PLoS One. 2013;8:e73445.
pubmed: 24039943 pmcid: 3770640 doi: 10.1371/journal.pone.0073445
Rodríguez-Carmona Y, Meijer JL, Zhou Y, Jansen EC, Perng W, Banker M, et al. Metabolomics reveals sex-specific pathways associated with changes in adiposity and muscle mass in a cohort of Mexican adolescents. Pediatr Obes. 2022;17:e12887.
pubmed: 35023314 doi: 10.1111/ijpo.12887
van Beijsterveldt I, Snowden SG, Myers PN, de Fluiter KS, van de Heijning B, Brix S, et al. Metabolomics in early life and the association with body composition at age 2 years. Pediatr Obes. 2022;17:e12859.
pubmed: 34644810 doi: 10.1111/ijpo.12859
do Prado WL, Josephson S, Cosentino RG, Churilla JR, Hossain J, Balagopal PB. Preliminary evidence of glycine as a biomarker of cardiovascular disease risk in children with obesity. Int J Obes (Lond). 2023;47:1023–6.
pubmed: 37516817 doi: 10.1038/s41366-023-01354-w
Cosentino RG, Churilla JR, Josephson S, Molle-Rios Z, Hossain MJ, Prado WL, et al. Branched-chain amino acids and relationship with inflammation in youth with obesity: a randomized controlled intervention study. J Clin Endocrinol Metab. 2021;106:3129–39.
pubmed: 34286837 doi: 10.1210/clinem/dgab538
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta. 2012;1821:754–61.
pubmed: 21979151 doi: 10.1016/j.bbalip.2011.09.009
Furse S, de Kroon AI. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol. 2015;32:117–9.
pubmed: 26306852 doi: 10.3109/09687688.2015.1066894
Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. Pediatr Endocrinol Rev. 2012;10:130–9.
pubmed: 23469390 pmcid: 4154503
Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes. 2009;16:10–5.
pubmed: 19115520 doi: 10.1097/MED.0b013e328320d54c
Goulding A, Taylor RW, Gold E, Lewis-Barned NJ. Regional body fat distribution in relation to pubertal stage: a dual-energy X-ray absorptiometry study of New Zealand girls and young women. Am J Clin Nutr. 1996;64:546–51.
pubmed: 8839498 doi: 10.1093/ajcn/64.4.546
Roemmich JN, Clark PA, Lusk M, Friel A, Weltman A, Epstein LH, et al. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release. Int J Obes Relat Metab Disord. 2002;26:701–9.
pubmed: 12032756 doi: 10.1038/sj.ijo.0801975
Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, et al. Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab. 2010;95:5189–98.
pubmed: 20829185 pmcid: 3206517 doi: 10.1210/jc.2010-1047
Cheng D, Zhao X, Yang S, Cui H, Wang G. Metabolomic signature between metabolically healthy overweight/obese and metabolically unhealthy overweight/obese: a systematic review. Diabetes Metab Syndr Obes. 2021;14:991–1010.
pubmed: 33692630 pmcid: 7939496 doi: 10.2147/DMSO.S294894
Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.
pubmed: 18177724 doi: 10.1016/j.cmet.2007.10.013
Fatima S, Hu X, Gong RH, Huang C, Chen M, Wong HLX, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76:2547–57.
pubmed: 30968170 pmcid: 11105207 doi: 10.1007/s00018-019-03092-7
Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The relationship between branched-chain amino acid-related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res. 2016;2016:2794591.
pubmed: 27642608 pmcid: 5014958 doi: 10.1155/2016/2794591
Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306:E1378–87.
pubmed: 24760988 pmcid: 4059985 doi: 10.1152/ajpendo.00656.2013
Hellmuth C, Kirchberg FF, Brandt S, Moß A, Walter V, Rothenbacher D, et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children. Sci Rep. 2019;9:5053.
pubmed: 30911015 pmcid: 6433919 doi: 10.1038/s41598-019-41449-x
Rzehak P, Hellmuth C, Uhl O, Kirchberg FF, Peissner W, Harder U, et al. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0). Ann Nutr Metab. 2014;64:294–303.
pubmed: 25300273 doi: 10.1159/000365037
Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101:871–9.
pubmed: 26709969 doi: 10.1210/jc.2015-3525
van Valkengoed IGM, Argmann C, Ghauharali-van der Vlugt K, Aerts J, Brewster LM, Peters RJG, et al. Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin. Nutr Diabetes. 2017;7:300.
pubmed: 29259157 pmcid: 5865542 doi: 10.1038/s41387-017-0003-z
Li-Gao R, Hughes DA, le Cessie S, de Mutsert R, den Heijer M, Rosendaal FR, et al. Assessment of reproducibility and biological variability of fasting and postprandial plasma metabolite concentrations using 1H NMR spectroscopy. PLoS One. 2019;14:e0218549.
pubmed: 31220183 pmcid: 6586348 doi: 10.1371/journal.pone.0218549
Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37:1944–58.
pubmed: 27122601 pmcid: 4929379 doi: 10.1093/eurheartj/ehw152
Keirns BH, Sciarrillo CM, Koemel NA, Emerson SR. Fasting non-fasting and postprandial triglycerides for screening cardiometabolic risk. J Nutr Sci. 2021;10:e75.
pubmed: 34589207 pmcid: 8453457 doi: 10.1017/jns.2021.73
Benn M, Tybjaerg-Hansen A, McCarthy MI, Jensen GB, Grande P, Nordestgaard BG. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a Mendelian randomization study. J Am Coll Cardiol. 2012;59:2356–65.
pubmed: 22698489 pmcid: 4606982 doi: 10.1016/j.jacc.2012.02.043
DeBoer MD, Filipp SL, Gurka MJ. Associations of a metabolic syndrome severity score with coronary heart disease and diabetes in fasting vs. non-fasting individuals. Nutr Metab Cardiovasc Dis. 2020;30:92–8.
pubmed: 31662283 doi: 10.1016/j.numecd.2019.08.010
Vajravelu ME, Hirschfeld E, Gebremariam A, Burant CF, Herman WH, Peterson KE, et al. Prospective test performance of nonfasting biomarkers to identify dysglycemia in children and adolescents. Horm Res Paediatr. 2023;96:316–24.
pubmed: 36380614 doi: 10.1159/000528043

Auteurs

Mireille C Schipper (MC)

The Generation R Study Group Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Sophia M Blaauwendraad (SM)

The Generation R Study Group Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Berthold Koletzko (B)

LMU - Ludwig Maximilians Universität Munich, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospitals, Munich, Germany.

Edwin H G Oei (EHG)

Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Vincent W V Jaddoe (VWV)

The Generation R Study Group Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Romy Gaillard (R)

The Generation R Study Group Erasmus MC, University Medical Center, Rotterdam, the Netherlands. r.gaillard@erasmusmc.nl.
Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands. r.gaillard@erasmusmc.nl.

Classifications MeSH