Dyspnea in young subjects with congenital central hypoventilation syndrome.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
08 Jun 2024
Historique:
received: 01 03 2024
accepted: 19 05 2024
revised: 10 05 2024
medline: 9 6 2024
pubmed: 9 6 2024
entrez: 8 6 2024
Statut: aheadofprint

Résumé

It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO Young subjects with CCHS exhibit some degree of dyspnea under CO

Sections du résumé

BACKGROUND BACKGROUND
It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO
METHODS METHODS
We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO
MAIN RESULTS RESULTS
Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO
CONCLUSION CONCLUSIONS
About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO
IMPACT CONCLUSIONS
Young subjects with CCHS exhibit some degree of dyspnea under CO

Identifiants

pubmed: 38851851
doi: 10.1038/s41390-024-03305-1
pii: 10.1038/s41390-024-03305-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.

Références

Trang, H. et al. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J. Rare Dis. 15, 252 (2020).
doi: 10.1186/s13023-020-01460-2 pubmed: 32958024 pmcid: 7503443
Paton, J. Y., Swaminathan, S., Sargent, C. W. & Keens, T. G. Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am. Rev. Respir. Dis. 140, 368–372 (1989).
doi: 10.1164/ajrccm/140.2.368 pubmed: 2764373
Shea, S. A., Andres, L. P., Shannon, D. C., Guz, A. & Banzett, R. B. Respiratory sensations in subjects who lack a ventilatory response to CO2. Respir. Physiol. 93, 203–219 (1993).
doi: 10.1016/0034-5687(93)90006-V pubmed: 8210759
Spengler, C. M., Banzett, R. B., Systrom, D. M., Shannon, D. C. & Shea, S. A. Respiratory sensations during heavy exercise in subjects without respiratory chemosensitivity. Respir. Physiol. 114, 65–74 (1998).
doi: 10.1016/S0034-5687(98)00073-5 pubmed: 9858052
Ghosh, R. N. et al. Impaired ventilation during 6-min walk test in congenital central hypoventilation syndrome. Pediatr. Pulmonol. 57, 1660–1667 (2022).
doi: 10.1002/ppul.25940 pubmed: 35460211
Carroll, M. S. et al. Residual chemosensitivity to ventilatory challenges in genotyped congenital central hypoventilation syndrome. J. Appl Physiol. 116, 439–450 (2014).
doi: 10.1152/japplphysiol.01310.2013 pubmed: 24381123
Bokov, P. et al. Central CO2 chemosensitivity and CO2 controller gain independently contribute to daytime Pco2 in young subjects with congenital central hypoventilation syndrome. J. Appl Physiol. 135, 343–351 (2023).
doi: 10.1152/japplphysiol.00182.2023 pubmed: 37391887
Gandevia, S. C. et al. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol. 470, 85–107 (1993).
doi: 10.1113/jphysiol.1993.sp019849 pubmed: 8308755 pmcid: 1143908
Chonan, T. et al. Influence of sustained hypoxia on the sensation of dyspnea. Jpn J. Physiol. 48, 291–295 (1998).
doi: 10.2170/jjphysiol.48.291 pubmed: 9757145
Bokov, P., Matrot, B., Gallego, J. & Delclaux, C. Comparison of methods of chemical loop gain measurement during tidal ventilation in awake healthy subjects. J. Appl Physiol. 125, 1681–1692 (2018).
doi: 10.1152/japplphysiol.00010.2018 pubmed: 30138080
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med 166, 111–117 (2002).
doi: 10.1164/ajrccm.166.1.at1102
Geiger, R. et al. Six-minute walk test in children and adolescents. J. Pediatr. 150, 395–9, 399.e1-2 (2007).
doi: 10.1016/j.jpeds.2006.12.052 pubmed: 17382117
Bokov, P. et al. A decrease in plant gain, namely CO2 stores, characterizes dysfunctional breathing whatever its subtype in children. Front Physiol. 14, 1217391 (2023).
doi: 10.3389/fphys.2023.1217391 pubmed: 37469562 pmcid: 10352948
Cooper, D. M., Weiler-Ravell, D., Whipp, B. J. & Wasserman, K. Aerobic parameters of exercise as a function of body size during growth in children. J. Appl Physiol. Respir. Environ. Exerc Physiol. 56, 628–634 (1984).
pubmed: 6706770
Parshall, M. B. et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am. J. Respir. Crit. Care Med 185, 435–452 (2012).
doi: 10.1164/rccm.201111-2042ST pubmed: 22336677 pmcid: 5448624
Banzett, R. B., Lansing, R. W. & Binks, A. P. Air Hunger: A Primal Sensation and a Primary Element of Dyspnea. Compr. Physiol. 11, 1449–1483 (2021).
doi: 10.1002/cphy.c200001 pubmed: 33577128 pmcid: 10986303
Dudoignon, B. et al. Heart rate variability in congenital central hypoventilation syndrome: relationships with hypertension and sinus pauses. Pediatr. Res 93, 1003–1009 (2023).
doi: 10.1038/s41390-022-02215-4 pubmed: 35882978
Botek, M., Krejčí, J., De Smet, S., Gába, A. & McKune, A. J. Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton. Neurosci. 190, 40–45 (2015).
doi: 10.1016/j.autneu.2015.04.001 pubmed: 25907329
Hou, J. et al. Comprehensive viewpoints on heart rate variability at high altitude. Clin. Exp. Hypertens. 45, 2238923 (2023).
doi: 10.1080/10641963.2023.2238923 pubmed: 37552638
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).
doi: 10.1097/00001648-199001000-00010 pubmed: 2081237
Lauer, M. S., Okin, P. M., Larson, M. G., Evans, J. C. & Levy, D. Impaired heart rate response to graded exercise. Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 93, 1520–1526 (1996).
doi: 10.1161/01.CIR.93.8.1520 pubmed: 8608620
Wan, L. et al. Repeated experiences of air hunger and ventilatory behavior in response to hypercapnia in the standardized rebreathing test: effects of anxiety. Biol. Psychol. 77, 223–232 (2008).
doi: 10.1016/j.biopsycho.2007.10.013 pubmed: 18077078
Banzett, R. B., Lansing, R. W., Evans, K. C. & Shea, S. A. Stimulus-response characteristics of CO2-induced air hunger in normal subjects. Respir. Physiol. 103, 19–31 (1996).
doi: 10.1016/0034-5687(95)00050-X pubmed: 8822220
Moosavi, S. H. et al. Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans. J. Appl Physiol. 94, 141–154 (2003).
doi: 10.1152/japplphysiol.00594.2002 pubmed: 12391041
Shea, S. A., Andres, L. P., Shannon, D. C. & Banzett, R. B. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J. Physiol. 468, 623–640 (1993).
doi: 10.1113/jphysiol.1993.sp019792 pubmed: 8254528 pmcid: 1143847
Casanova, C. et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur. Respir. J. 37, 150–156 (2011).
doi: 10.1183/09031936.00194909 pubmed: 20525717
Zhang, J. et al. A multidimensional assessment of dyspnoea in healthy adults during exercise. Eur. J. Appl Physiol. 120, 2533–2545 (2020).
doi: 10.1007/s00421-020-04479-2 pubmed: 32862248
Sands, S. A. et al. A model analysis of arterial oxygen desaturation during apnea in preterm infants. PLoS Comput Biol. 5, e1000588 (2009).
doi: 10.1371/journal.pcbi.1000588 pubmed: 19997495 pmcid: 2778953
Grote, L., Kraiczi, H. & Hedner, J. Reduced alpha- and beta(2)-adrenergic vascular response in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med 162, 1480–1487 (2000).
doi: 10.1164/ajrccm.162.4.9912028 pubmed: 11029365
Dudoignon, B. et al. Neurogenic hypertension characterizes children with congenital central hypoventilation syndrome and is aggravated by alveolar hypoventilation during sleep. J. Hypertens. 41, 1339–1346 (2023).
doi: 10.1097/HJH.0000000000003475 pubmed: 37260279

Auteurs

Plamen Bokov (P)

Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France.

Benjamin Dudoignon (B)

Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France.

Rodrigue Fikiri Bavurhe (R)

AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique, F-75019, Paris, France.

Nathalie Couque (N)

AP-HP, Hôpital Robert Debré, Département de génétique, F-75019, Paris, France.

Boris Matrot (B)

Université de Paris, INSERM NeuroDiderot, F-75019, Paris, France.

Christophe Delclaux (C)

Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France. christophe.delclaux@aphp.fr.

Classifications MeSH