Dyspnea in young subjects with congenital central hypoventilation syndrome.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
08 Jun 2024
08 Jun 2024
Historique:
received:
01
03
2024
accepted:
19
05
2024
revised:
10
05
2024
medline:
9
6
2024
pubmed:
9
6
2024
entrez:
8
6
2024
Statut:
aheadofprint
Résumé
It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO Young subjects with CCHS exhibit some degree of dyspnea under CO
Sections du résumé
BACKGROUND
BACKGROUND
It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO
METHODS
METHODS
We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO
MAIN RESULTS
RESULTS
Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO
CONCLUSION
CONCLUSIONS
About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO
IMPACT
CONCLUSIONS
Young subjects with CCHS exhibit some degree of dyspnea under CO
Identifiants
pubmed: 38851851
doi: 10.1038/s41390-024-03305-1
pii: 10.1038/s41390-024-03305-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
Références
Trang, H. et al. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J. Rare Dis. 15, 252 (2020).
doi: 10.1186/s13023-020-01460-2
pubmed: 32958024
pmcid: 7503443
Paton, J. Y., Swaminathan, S., Sargent, C. W. & Keens, T. G. Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am. Rev. Respir. Dis. 140, 368–372 (1989).
doi: 10.1164/ajrccm/140.2.368
pubmed: 2764373
Shea, S. A., Andres, L. P., Shannon, D. C., Guz, A. & Banzett, R. B. Respiratory sensations in subjects who lack a ventilatory response to CO2. Respir. Physiol. 93, 203–219 (1993).
doi: 10.1016/0034-5687(93)90006-V
pubmed: 8210759
Spengler, C. M., Banzett, R. B., Systrom, D. M., Shannon, D. C. & Shea, S. A. Respiratory sensations during heavy exercise in subjects without respiratory chemosensitivity. Respir. Physiol. 114, 65–74 (1998).
doi: 10.1016/S0034-5687(98)00073-5
pubmed: 9858052
Ghosh, R. N. et al. Impaired ventilation during 6-min walk test in congenital central hypoventilation syndrome. Pediatr. Pulmonol. 57, 1660–1667 (2022).
doi: 10.1002/ppul.25940
pubmed: 35460211
Carroll, M. S. et al. Residual chemosensitivity to ventilatory challenges in genotyped congenital central hypoventilation syndrome. J. Appl Physiol. 116, 439–450 (2014).
doi: 10.1152/japplphysiol.01310.2013
pubmed: 24381123
Bokov, P. et al. Central CO2 chemosensitivity and CO2 controller gain independently contribute to daytime Pco2 in young subjects with congenital central hypoventilation syndrome. J. Appl Physiol. 135, 343–351 (2023).
doi: 10.1152/japplphysiol.00182.2023
pubmed: 37391887
Gandevia, S. C. et al. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol. 470, 85–107 (1993).
doi: 10.1113/jphysiol.1993.sp019849
pubmed: 8308755
pmcid: 1143908
Chonan, T. et al. Influence of sustained hypoxia on the sensation of dyspnea. Jpn J. Physiol. 48, 291–295 (1998).
doi: 10.2170/jjphysiol.48.291
pubmed: 9757145
Bokov, P., Matrot, B., Gallego, J. & Delclaux, C. Comparison of methods of chemical loop gain measurement during tidal ventilation in awake healthy subjects. J. Appl Physiol. 125, 1681–1692 (2018).
doi: 10.1152/japplphysiol.00010.2018
pubmed: 30138080
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med 166, 111–117 (2002).
doi: 10.1164/ajrccm.166.1.at1102
Geiger, R. et al. Six-minute walk test in children and adolescents. J. Pediatr. 150, 395–9, 399.e1-2 (2007).
doi: 10.1016/j.jpeds.2006.12.052
pubmed: 17382117
Bokov, P. et al. A decrease in plant gain, namely CO2 stores, characterizes dysfunctional breathing whatever its subtype in children. Front Physiol. 14, 1217391 (2023).
doi: 10.3389/fphys.2023.1217391
pubmed: 37469562
pmcid: 10352948
Cooper, D. M., Weiler-Ravell, D., Whipp, B. J. & Wasserman, K. Aerobic parameters of exercise as a function of body size during growth in children. J. Appl Physiol. Respir. Environ. Exerc Physiol. 56, 628–634 (1984).
pubmed: 6706770
Parshall, M. B. et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am. J. Respir. Crit. Care Med 185, 435–452 (2012).
doi: 10.1164/rccm.201111-2042ST
pubmed: 22336677
pmcid: 5448624
Banzett, R. B., Lansing, R. W. & Binks, A. P. Air Hunger: A Primal Sensation and a Primary Element of Dyspnea. Compr. Physiol. 11, 1449–1483 (2021).
doi: 10.1002/cphy.c200001
pubmed: 33577128
pmcid: 10986303
Dudoignon, B. et al. Heart rate variability in congenital central hypoventilation syndrome: relationships with hypertension and sinus pauses. Pediatr. Res 93, 1003–1009 (2023).
doi: 10.1038/s41390-022-02215-4
pubmed: 35882978
Botek, M., Krejčí, J., De Smet, S., Gába, A. & McKune, A. J. Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton. Neurosci. 190, 40–45 (2015).
doi: 10.1016/j.autneu.2015.04.001
pubmed: 25907329
Hou, J. et al. Comprehensive viewpoints on heart rate variability at high altitude. Clin. Exp. Hypertens. 45, 2238923 (2023).
doi: 10.1080/10641963.2023.2238923
pubmed: 37552638
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).
doi: 10.1097/00001648-199001000-00010
pubmed: 2081237
Lauer, M. S., Okin, P. M., Larson, M. G., Evans, J. C. & Levy, D. Impaired heart rate response to graded exercise. Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 93, 1520–1526 (1996).
doi: 10.1161/01.CIR.93.8.1520
pubmed: 8608620
Wan, L. et al. Repeated experiences of air hunger and ventilatory behavior in response to hypercapnia in the standardized rebreathing test: effects of anxiety. Biol. Psychol. 77, 223–232 (2008).
doi: 10.1016/j.biopsycho.2007.10.013
pubmed: 18077078
Banzett, R. B., Lansing, R. W., Evans, K. C. & Shea, S. A. Stimulus-response characteristics of CO2-induced air hunger in normal subjects. Respir. Physiol. 103, 19–31 (1996).
doi: 10.1016/0034-5687(95)00050-X
pubmed: 8822220
Moosavi, S. H. et al. Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans. J. Appl Physiol. 94, 141–154 (2003).
doi: 10.1152/japplphysiol.00594.2002
pubmed: 12391041
Shea, S. A., Andres, L. P., Shannon, D. C. & Banzett, R. B. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J. Physiol. 468, 623–640 (1993).
doi: 10.1113/jphysiol.1993.sp019792
pubmed: 8254528
pmcid: 1143847
Casanova, C. et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur. Respir. J. 37, 150–156 (2011).
doi: 10.1183/09031936.00194909
pubmed: 20525717
Zhang, J. et al. A multidimensional assessment of dyspnoea in healthy adults during exercise. Eur. J. Appl Physiol. 120, 2533–2545 (2020).
doi: 10.1007/s00421-020-04479-2
pubmed: 32862248
Sands, S. A. et al. A model analysis of arterial oxygen desaturation during apnea in preterm infants. PLoS Comput Biol. 5, e1000588 (2009).
doi: 10.1371/journal.pcbi.1000588
pubmed: 19997495
pmcid: 2778953
Grote, L., Kraiczi, H. & Hedner, J. Reduced alpha- and beta(2)-adrenergic vascular response in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med 162, 1480–1487 (2000).
doi: 10.1164/ajrccm.162.4.9912028
pubmed: 11029365
Dudoignon, B. et al. Neurogenic hypertension characterizes children with congenital central hypoventilation syndrome and is aggravated by alveolar hypoventilation during sleep. J. Hypertens. 41, 1339–1346 (2023).
doi: 10.1097/HJH.0000000000003475
pubmed: 37260279