Genetic polymorphisms linked to extreme postorthodontic external apical root resorption in Koreans.
Humans
Root Resorption
/ genetics
Polymorphism, Single Nucleotide
Female
Male
Republic of Korea
Haplotypes
Adolescent
Phenotype
Genetic Predisposition to Disease
Receptors, Purinergic P2X7
/ genetics
Osteoprotegerin
/ genetics
Orthodontics, Corrective
Asian People
/ genetics
Young Adult
East Asian People
RANK Ligand
External apical root resorption
Genetic polymorphisms
Orthodontic treatment
Journal
Progress in orthodontics
ISSN: 2196-1042
Titre abrégé: Prog Orthod
Pays: Germany
ID NLM: 100936353
Informations de publication
Date de publication:
10 Jun 2024
10 Jun 2024
Historique:
received:
15
08
2023
accepted:
10
05
2024
medline:
10
6
2024
pubmed:
10
6
2024
entrez:
9
6
2024
Statut:
epublish
Résumé
External apical root resorption (EARR) is a common undesirable outcome of orthodontic treatment, this study aimed to identify genetic polymorphisms associated with the susceptibility to extreme orthodontic-induced EARR in a Korean population using extreme phenotype analysis sampling. Genomic DNA was isolated from the saliva of 77 patients who underwent orthodontic treatment involving two maxillary premolar extractions. The patients were divided into two groups based on EARR values measured on periapical radiographs: The significant resorption group (SG, EARR ≥ 4 mm) and the normal group (NG, EARR < 2 mm). In the NG group, patients with EARR < 1 mm were named the non-resorption group (NonG). Targeted next-generation sequencing was performed using the screened single nucleotide polymorphisms (SNPs), and firth logistic regression analysis was used to determine genetic associations with EARR. Haplotype-based association analysis was performed for specific SNPs. SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 were found to be significantly associated with severe EARR (p < 0.05, pre-Bonferroni correction p-values). Additionally, the haplotype CCA of rs17525809, rs208294, and rs1718119 P2RX7 had a higher frequency in the SG group. Extreme phenotype analysis has identified eleven SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 that are associated with severe root resorption in the Korean population. These findings will contribute to the development of predictive diagnostic tools for identifying severe root resorption that may occur during orthodontic treatment.
Sections du résumé
BACKGROUND
BACKGROUND
External apical root resorption (EARR) is a common undesirable outcome of orthodontic treatment, this study aimed to identify genetic polymorphisms associated with the susceptibility to extreme orthodontic-induced EARR in a Korean population using extreme phenotype analysis sampling.
METHODS
METHODS
Genomic DNA was isolated from the saliva of 77 patients who underwent orthodontic treatment involving two maxillary premolar extractions. The patients were divided into two groups based on EARR values measured on periapical radiographs: The significant resorption group (SG, EARR ≥ 4 mm) and the normal group (NG, EARR < 2 mm). In the NG group, patients with EARR < 1 mm were named the non-resorption group (NonG). Targeted next-generation sequencing was performed using the screened single nucleotide polymorphisms (SNPs), and firth logistic regression analysis was used to determine genetic associations with EARR. Haplotype-based association analysis was performed for specific SNPs.
RESULTS
RESULTS
SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 were found to be significantly associated with severe EARR (p < 0.05, pre-Bonferroni correction p-values). Additionally, the haplotype CCA of rs17525809, rs208294, and rs1718119 P2RX7 had a higher frequency in the SG group.
CONCLUSION
CONCLUSIONS
Extreme phenotype analysis has identified eleven SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 that are associated with severe root resorption in the Korean population. These findings will contribute to the development of predictive diagnostic tools for identifying severe root resorption that may occur during orthodontic treatment.
Identifiants
pubmed: 38853224
doi: 10.1186/s40510-024-00521-7
pii: 10.1186/s40510-024-00521-7
doi:
Substances chimiques
P2RX7 protein, human
0
Receptors, Purinergic P2X7
0
Osteoprotegerin
0
TNFSF11 protein, human
0
TNFRSF11B protein, human
0
RANK Ligand
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23Informations de copyright
© 2024. The Author(s).
Références
Deng Y, Sun Y, Xu T. Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis. BMC Oral Health. 2018;18(1):116.
pubmed: 29945577
pmcid: 6020331
doi: 10.1186/s12903-018-0579-2
Abbott PV, Lin S. Tooth resorption-part 2: a clinical classification. Dent Traumatol. 2022;38(4):267–85.
pubmed: 35605161
pmcid: 9543863
doi: 10.1111/edt.12762
Lund H, Grondahl K, Hansen K, Grondahl HG. Apical root resorption during orthodontic treatment. A prospective study using cone beam CT. Angle Orthod. 2012;82(3):480–7.
pubmed: 21919826
doi: 10.2319/061311-390.1
Remington DN, Joondeph DR, Artun J, Riedel RA, Chapko MK. Long-term evaluation of root resorption occurring during orthodontic treatment. Am J Orthod Dentofac Orthop. 1989;96(1):43–6.
doi: 10.1016/0889-5406(89)90227-8
Sameshima GT, Iglesias-Linares A. Orthodontic root resorption. J World Fed Orthod. 2021;10(4):135–43.
pubmed: 34785166
doi: 10.1016/j.ejwf.2021.09.003
Samandara A, Papageorgiou SN, Ioannidou-Marathiotou I, Kavvadia-Tsatala S, Papadopoulos MA. Evaluation of orthodontically induced external root resorption following orthodontic treatment using cone beam computed tomography (CBCT): a systematic review and meta-analysis. Eur J Orthod. 2019;41(1):67–79.
pubmed: 29771300
doi: 10.1093/ejo/cjy027
Silva HC, Lavado N, Canova F, Lopez MG, Regateiro FJ, Pereira SA. Influence of clinical factors on the protective or deleterious impact of genetic variants in orthodontically induced external root resorption: an observational study. BMC Oral Health. 2022;22(1):270.
pubmed: 35787289
pmcid: 9254450
doi: 10.1186/s12903-022-02306-y
Agarwal A, Sharma VP, Singh GK, Tikku T, Agarwal N, Mengi A. The effect of central incisor’s root proximity to the cortical plate and apical root resorption in extraction and non-extraction treatment. J Orthod Sci. 2014;3(2):46–54.
pubmed: 24987663
pmcid: 4077108
doi: 10.4103/2278-0203.132917
Harris EF, Kineret SE, Tolley EA. A heritable component for external apical root resorption in patients treated orthodontically. Am J Orthod Dentofac Orthop. 1997;111(3):301–9.
doi: 10.1016/S0889-5406(97)70189-6
Kalra S, Gupta P, Tripathi T, Rai P. External apical root resorption in orthodontic patients: molecular and genetic basis. J Family Med Prim Care. 2020;9(8):3872–82.
pubmed: 33110782
pmcid: 7586589
doi: 10.4103/jfmpc.jfmpc_802_20
Lim WH, Liu B, Hunter DJ, Cheng D, Mah SJ, Helms JA. Downregulation of wnt causes root resorption. Am J Orthod Dentofac Orthop. 2014;146:337–45.
doi: 10.1016/j.ajodo.2014.05.027
Pinheiro LHM, Guimaraes LS, Antunes LS, Kuchler EC, Kirschneck C, Antunes LAA. Genetic variation involved in the risk to external apical root resorption in orthodontic patients: a systematic review. Clin Oral Investig. 2021;25(10):5613–27.
pubmed: 34392402
doi: 10.1007/s00784-021-04074-5
Sharab LY, Morford LA, Dempsey J, Falcao-Alencar G, Mason A, Jacobson E, et al. Genetic and treatment-related risk factors associated with external apical root resorption (EARR) concurrent with orthodontia. Orthod Craniofac Res. 2015;18(1Suppl 1):71–82.
pubmed: 25865535
pmcid: 4810020
doi: 10.1111/ocr.12078
Al-Qawasmi RA, Hartsfield JK Jr, Everett ET, Flury L, Liu L, Foroud TM, et al. Genetic predisposition to external apical root resorption. Am J Orthod Dentofac Orthop. 2003;123(3):242–52.
doi: 10.1067/mod.2003.42
Gulden N, Eggermann T, Zerres K, Beer M, Meinelt A, Diedrich P. Interleukin-1 polymorphisms in relation to external apical root resorption (EARR). J Orofac Orthop. 2009;70(1):20–38.
pubmed: 19194673
doi: 10.1007/s00056-009-8808-6
Linhartová P, Cernochova P, Izakovicova Holla L. IL 1 gene polymorphisms in relation to external apical root resorption concurrent with orthodontia. Oral Dis. 2013;19(3):262–70.
pubmed: 22882407
doi: 10.1111/j.1601-0825.2012.01973.x
Iglesias-Linares A, Yañez‐Vico R, Ballesta‐Mudarra S, Ortiz‐Ariza E, Ortega‐Rivera H, Mendoza‐Mendoza A, et al. Postorthodontic external root resorption is associated with IL1 receptor antagonist gene variations. Oral Dis. 2012;18(2):198–205.
pubmed: 22035161
doi: 10.1111/j.1601-0825.2011.01865.x
Panarella M, Burkett KM. A cautionary note on the effects of Population Stratification under an Extreme phenotype Sampling Design. Front Genet. 2019;10:398.
pubmed: 31130982
pmcid: 6509877
doi: 10.3389/fgene.2019.00398
Yu J, Choi YJ, Choi SH, Jung HS, Lee JH, Cha JY. The effect of genetic polymorphisms on treatment duration following premolar extraction. Sci Rep. 2021;11(1):15942.
pubmed: 34354108
pmcid: 8342496
doi: 10.1038/s41598-021-94979-8
Linge BO, Linge L. Apical root resorption in upper anterior teeth. Eur J Orthod. 1983;5(3):173–83.
pubmed: 6578039
doi: 10.1093/ejo/5.3.173
Jacobs C, Gebhardt PF, Jacobs V, Hechtner M, Meila D, Wehrbein H. Root resorption, treatment time and extraction rate during orthodontic treatment with self-ligating and conventional brackets. Head Face Med. 2014;10:2.
pubmed: 24456620
pmcid: 3922953
doi: 10.1186/1746-160X-10-2
Burstone CJ, James RB, Legan H, Murphy GA, Norton LA. Cephalometrics for orthognathic surgery. J Oral Surg. 1978;36(4):269–77.
pubmed: 273073
Lee YJ, Pak H, Hwang CJ, Choi YJ, Lee JH, Lee JH, et al. Targeted next-generation sequencing for comprehensive genetic analysis of external apical root resorption during orthodontic treatment with premolar extraction in the Korean population. Am J Orthod Dentofac Orthop. 2022. https://doi.org/10.1016/j.ajodo.2021.06.022
doi: 10.1016/j.ajodo.2021.06.022
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.
pubmed: 33237311
doi: 10.1093/nar/gkaa1074
Ren H, Chen J, Deng F, Zheng L, Liu X, Dong Y. Comparison of cone-beam computed tomography and periapical radiography for detecting simulated apical root resorption. Angle Orthod. 2013;83(2):189–95.
pubmed: 22891767
doi: 10.2319/050512-372.1
Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: periapical vs panoramic films. Angle Orthod. 2001;71(3):185–9.
pubmed: 11407770
Brezniak N, Goren S, Zoizner R, Dinbar A, Arad A, Wasserstein A, et al. A comparison of three methods to accurately measure root length. Angle Orthod. 2004;74(6):786–91.
pubmed: 15673142
Iber-Diaz P, Senen-Carramolino R, Iglesias-Linares A, Fernandez-Navarro P, Flores-Mir C, Yanez-Vico RM. GWAS of post-orthodontic aggressive external apical Root Resorption identified multiple putative loci at X-Y chromosomes. J Pers Med. 2020;10(4).
Martinez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt pathway Extracellular Components and their essential roles in bone homeostasis. Genes (Basel). 2022;13(1).
Lim WH, Liu B, Cheng D, Williams BO, Mah SJ, Helms JA. Wnt signaling regulates homeostasis of the periodontal ligament. J Periodontal Res. 2014;49(6):751–9.
pubmed: 24410666
pmcid: 4528390
doi: 10.1111/jre.12158
Chatzopoulos GS, Koidou VP, Wolff LF. Expression of wnt signaling agonists and antagonists in periodontitis and healthy subjects, before and after non-surgical periodontal treatment: a systematic review. J Periodontal Res. 2022;57(4):698–710.
pubmed: 35719081
doi: 10.1111/jre.13029
Yang F, Huang D, Xu L, Xu W, Yi X, Zhou X, et al. Wnt antagonist secreted frizzled-related protein I (sFRP1) may be involved in the osteogenic differentiation of periodontal ligament cells in chronic apical periodontitis. Int Endod J. 2021;54(5):768–79.
pubmed: 33290588
doi: 10.1111/iej.13461
Zhao Y, Yuan X, Liu B, Tulu US, Helms JA. Wnt-responsive odontoblasts secrete new dentin after superficial tooth Injury. J Dent Res. 2018;97(9):1047–54.
pubmed: 29566345
pmcid: 6055255
doi: 10.1177/0022034518763151
Yang H, Li G, Han N, Zhang X, Cao Y, Cao Y, et al. Secreted frizzled-related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions. Cell Prolif. 2020;53(1):e12694.
pubmed: 31568642
doi: 10.1111/cpr.12694
Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, et al. miR-218 directs a wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287(50):42084–92.
pubmed: 23060446
pmcid: 3516754
doi: 10.1074/jbc.M112.377515
Nemoto E, Koshikawa Y, Kanaya S, Tsuchiya M, Tamura M, Somerman MJ, et al. Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone. 2009;44(5):805–12.
pubmed: 19442631
doi: 10.1016/j.bone.2008.12.029
Lu J, Duan Y, Zhang M, Wu M, Wang Y. Expression of Wnt3a, Wnt10b, β-catenin and DKK1 in periodontium during orthodontic tooth movement in rats. Acta Odontol Scand. 2016;74(3):217–23.
pubmed: 26414930
doi: 10.3109/00016357.2015.1090011
Li T, Wang H, Jiang Y, Guan Y, Chen S, Wu Z et al. Canonical Wnt/β-catenin signaling has positive effects on osteogenesis, but can have negative effects on cementogenesis. J Periodontol.93(11):1725–37.
Sims AM, Shephard N, Carter K, Doan T, Dowling A, Duncan EL, et al. Genetic analyses in a sample of individuals with high or low BMD shows association with multiple wnt pathway genes. J Bone Min Res. 2008;23(4):499–506.
doi: 10.1359/jbmr.071113
Yu M, Fan Z, Wong S-W, Sun K, Zhang L, Liu H et al. Lrp6 dynamic expression in tooth development and mutations in oligodon tia. J Dent Res.100(4):415–22.
De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(22):9434–9.
pubmed: 17517621
pmcid: 1890512
doi: 10.1073/pnas.0603523104
Tomaszewski M, Charchar FJ, Barnes T, Gawron-Kiszka M, Sedkowska A, Podolecka E, et al. A common variant in low-density lipoprotein receptor-related protein 6 gene (LRP6) is associated with LDL-cholesterol. Arterioscler Thromb Vasc Biol. 2009;29(9):1316–21.
pubmed: 19667113
pmcid: 2814817
doi: 10.1161/ATVBAHA.109.185355
Riancho JA, Olmos JM, Pineda B, Garcia-Ibarbia C, Perez-Nunez MI, Nan DN, et al. Wnt receptors, bone mass, and fractures: gene-wide association analysis of LRP5 and LRP6 polymorphisms with replication. Eur J Endocrinol. 2011;164(1):123–31.
pubmed: 20926594
doi: 10.1530/EJE-10-0582
Iglesias-Linares A, Hartsfield JK. Jr. Cellular and Molecular pathways leading to External Root Resorption. J Dent Res. 2017;96(2):145–52.
pubmed: 27811065
doi: 10.1177/0022034516677539
Tyrovola JB, Spyropoulos MN, Makou M, Perrea D. Root resorption and the OPG/RANKL/RANK system: a mini review. J Oral Sci. 2008;50(4):367–76.
pubmed: 19106463
doi: 10.2334/josnusd.50.367
Liu Y, Du H, Wang Y, Liu M, Deng S, Fan L, et al. Osteoprotegerin-knockout mice developed early Onset Root Resorption. J Endod. 2016;42(10):1516–22.
pubmed: 27663616
doi: 10.1016/j.joen.2016.07.008
Fu Y-X, Gu J-H, Zhang Y-R, Tong X-S, Zhao H-Y, Yuan Y et al. Osteoprotegerin influences the bone resorption activity of osteoclasts. Int J Mol Med.31(6):1411–7.
Borges de Castilhos B, Machado de Souza C, Simas Netta Fontana MLS, Pereira FA, Tanaka OM, Trevilatto PC. Association of clinical variables and polymorphisms in RANKL, RANK, and OPG genes with external apical root resorption. Am J Orthod Dentofac Orthop. 2019;155(4):529–42.
doi: 10.1016/j.ajodo.2018.05.016
Bao BY, Lin VC, Huang SH, Pao JB, Chang TY, Lu TL, et al. Clinical significance of tumor necrosis factor receptor superfamily member 11b polymorphism in prostate cancer. Ann Surg Oncol. 2010;17(6):1675–81.
pubmed: 20204532
doi: 10.1245/s10434-010-0994-3
Viecilli RF, Katona TR, Chen J, Hartsfield JK Jr., Roberts WE. Orthodontic mechanotransduction and the role of the P2X7 receptor. Am J Orthod Dentofac Orthop. 2009;135(6):694. e1-16; discussion – 5.
doi: 10.1016/j.ajodo.2009.02.013
Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol. 2002;168(12):6436–45.
pubmed: 12055263
doi: 10.4049/jimmunol.168.12.6436
Pegoraro A, De Marchi E, Adinolfi E. P2X7 Variants in Oncogenesis. Cells. 2021;10(1):189.
pubmed: 33477845
pmcid: 7832898
doi: 10.3390/cells10010189
Ursu D, Ebert P, Langron E, Ruble C, Munsie L, Zou W, et al. Gain and loss of function of P2X7 receptors: mechanisms, pharmacology and relevance to diabetic neuropathic pain. Mol Pain. 2014;10:37.
pubmed: 24934217
pmcid: 4072620
doi: 10.1186/1744-8069-10-37
Oyanguren-Desez O, Rodriguez-Antiguedad A, Villoslada P, Domercq M, Alberdi E, Matute C. Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium. 2011;50(5):468–72.
pubmed: 21906809
doi: 10.1016/j.ceca.2011.08.002
Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci. 2007;27(35):9525–33.
pubmed: 17728465
pmcid: 6673129
doi: 10.1523/JNEUROSCI.0579-07.2007