Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in ferret primary visual cortex.
astrocytes
calcium imaging
correlative microscopy
in vivo microscopy
structure and function
tripartite synapse
visual cortex
volume electron microscopy
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
10 Jun 2024
10 Jun 2024
Historique:
revised:
25
05
2024
received:
08
12
2023
accepted:
02
06
2024
medline:
10
6
2024
pubmed:
10
6
2024
entrez:
10
6
2024
Statut:
aheadofprint
Résumé
Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : R00 EY031137
Pays : United States
Organisme : Max Planck Florida Institute for Neuroscience
Informations de copyright
© 2024 The Author(s). GLIA published by Wiley Periodicals LLC.
Références
Ali, F., & Kwan, A. C. (2020). Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: A review. Neurophotonics, 7, 011402.
Allam, S., Ghaderi, V., Bouteiller, J.‐M., Legendre, A., Nicolas, A., Greget, R., Bischoff, S., Baudry, M., & Berger, T. (2012). A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Frontiers in Computational Neuroscience, 6, 1–16. https://doi.org/10.3389/fncom.2012.00070
Allen, N. J., Bennett, M. L., Foo, L. C., Wang, G. X., Chakraborty, C., Smith, S. J., & Barres, B. A. (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 486, 410–414.
Araki, S., Onishi, I., Ikoma, Y., & Matsui, K. (2024). Astrocyte switch to the hyperactive mode. Glia, 1–17.
Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H., Robitaille, R., & Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron, 81, 728–739.
Arizono, M., Inavalli, V. K., Panatier, A., Pfeiffer, T., Angibaud, J., Levet, F., Ter Veer, M. J., Stobart, J., Bellocchio, L., Mikoshiba, K., & Marsicano, G. (2020). Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nature Communications, 11, 1906.
Aten, S., Kiyoshi, C. M., Arzola, E. P., Patterson, J. A., Taylor, A. T., Du, Y., Guiher, A. M., Philip, M., Camacho, E. G., Mediratta, D., Collins, K., Boni, K., Garcia, S. A., Kumar, R., Drake, A. N., Hegazi, A., Trank, L., Benson, E., Kidd, G., … Zhou, M. (2022). Ultrastructural view of astrocyte arborization, astrocyte‐astrocyte and astrocyte‐synapse contacts, intracellular vesicle‐like structures, and mitochondrial network. Progress in Neurobiology, 213, 102264.
Bak, L. K., Schousboe, A., & Waagepetersen, H. S. (2006). The glutamate/GABA‐glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98, 641–653.
Batiuk, M. Y., Martirosyan, A., Wahis, J., deVin, F., Marneffe, C., Kusserow, C., Koeppen, J., Viana, J. F., Oliveira, J. F., Voet, T., & Ponting, C. P. (2020). Identification of region‐specific astrocyte subtypes at single cell resolution. Nature Communications, 11, 1220.
Bayraktar, O. A., Bartels, T., Holmqvist, S., Kleshchevnikov, V., Martirosyan, A., Polioudakis, D., Ben Haim, L., Young, A. M., Batiuk, M. Y., Prakash, K., & Brown, A. (2020). Astrocyte layers in the mammalian cerebral cortex revealed by a single‐cell in situ transcriptomic map. Nature Neuroscience, 23, 500–509.
Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on astrocyte‐neuron metabolic cooperation. Cell Metabolism, 14, 724–738.
Belevich, I., Joensuu, M., Kumar, D., Vihinen, H., & Jokitalo, E. (2016). Microscopy image browser: A platform for segmentation and analysis of multidimensional datasets. PLoS Biology, 14, e1002340.
Beppu, K., Kubo, N., & Matsui, K. (2021). Glial amplification of synaptic signals. The Journal of Physiology, 599, 2085–2102.
Beppu, K., Sasaki, T., Tanaka, K. F., Yamanaka, A., Fukazawa, Y., Shigemoto, R., & Matsui, K. (2014). Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron, 81, 314–320.
Bernardinelli, Y., Randall, J., Janett, E., Nikonenko, I., König, S., Jones, E. V., Flores, C. E., Murai, K. K., Bochet, C. G., Holtmaat, A., & Muller, D. (2014). Activity‐dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Current Biology, 24, 1679–1688.
Blanco‐Suarez, E., Liu, T.‐F., Kopelevich, A., & Allen, N. J. (2018). Astrocyte‐secreted chordin‐like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron, 100, 1116–1132.e13.
Bonvento, G., & Bolaños, J. P. (2021). Astrocyte‐neuron metabolic cooperation shapes brain activity. Cell Metabolism, 33, 1546–1564.
Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., & Hayashi, Y. (2014). Structural and molecular remodeling of dendritic spine substructures during long‐term potentiation. Neuron, 82, 444–459.
Bouzier‐Sore, A. K., Voisin, P., Bouchaud, V., Bezancon, E., Franconi, J. M., & Pellerin, L. (2006). Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study. European Journal of Neuroscience, 24, 1687–1694.
Bröer, S., & Brookes, N. (2001). Transfer of glutamine between astrocytes and neurons. Journal of Neurochemistry, 77, 705–719.
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22, 183–192.
Chai, H., Diaz‐Castro, B., Shigetomi, E., Monte, E., Octeau, J. C., Yu, X., Cohn, W., Rajendran, P. S., Vondriska, T. M., Whitelegge, J. P., & Coppola, G. (2017). Neural circuit‐specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron, 95, 531–549.
Chen, W., Mahadomrongkul, V., Berger, U. V., Bassan, M., DeSilva, T., Tanaka, K., Irwin, N., Aoki, C., & Rosenberg, P. A. (2004). The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. The Journal of Neuroscience, 24, 1136–1148.
Cheung, G., Bataveljic, D., Visser, J., Kumar, N., Moulard, J., Dallérac, G., Mozheiko, D., Rollenhagen, A., Ezan, P., Mongin, C., Chever, O., Bemelmans, A.‐P., Lübke, J., Leray, I., & Rouach, N. (2022). Physiological synaptic activity and recognition memory require astroglial glutamine. Nature Communications, 13, 753.
Chung, W.‐S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., Joung, J., Foo, L. C., Thompson, A., Chen, C., Smith, S. J., & Barres, B. A. (2013). Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 504, 394–400.
Clavet‐Fournier, V., Lee, C., Wegner, W., Brose, N., Rhee, J., & Willig, K. I. (2024). Pre‐ and postsynaptic nanostructures increase in size and complexity after induction of long‐term potentiation. iScience, 27, 108679.
Conti, F., & Minelli, A. (1994). Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6‐diazo‐5‐oxo‐L‐norleucine (DON), an inhibitor of phosphate‐activated glutaminase. The Journal of Histochemistry and Cytochemistry, 42, 717–726.
Diamond, M. E., vonHeimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews. Neuroscience, 9, 601–612.
Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 378, eadc9020.
Favuzzi, E., & Rico, B. (2018). Molecular diversity underlying cortical excitatory and inhibitory synapse development. Current Opinion in Neurobiology, 53, 8–15.
Fiala, J. C., & Harris, K. M. (2001). Cylindrical diameters method for calibrating section thickness in serial electron microscopy. Journal of Microscopy, 202, 468–472.
Gaisler‐Salomon, I., Wang, Y., Chuhma, N., Zhang, H., Golumbic, Y. N., Mihali, A., Arancio, O., Sibille, E., & Rayport, S. (2012). Synaptic underpinnings of altered hippocampal function in glutaminase‐deficient mice during maturation. Hippocampus, 22, 1027–1039.
Gavrilov, N., Golyagina, I., Brazhe, A., Scimemi, A., Turlapov, V., & Semyanov, A. (2018). Astrocytic coverage of dendritic spines, dendritic shafts, and axonal boutons in hippocampal neuropil. Frontiers in Cellular Neuroscience, 12, 1–16. https://doi.org/10.3389/fncel.2018.00248
Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E., & Knott, G. W. (2006). Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biology, 4, e343.
Henneberger, C., Bard, L., Panatier, A., Reynolds, J. P., Kopach, O., Medvedev, N. I., Minge, D., Herde, M. K., Anders, S., Kraev, I., Heller, J. P., Rama, S., Zheng, K., Jensen, T. P., Sanchez‐Romero, I., Jackson, C. J., Janovjak, H., Ottersen, O. P., Nagelhus, E. A., … Rusakov, D. A. (2020). LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron, 108, 919–936.e11.
Henneberger, C., Papouin, T., Oliet, S. H. R., & Rusakov, D. A. (2010). Long term potentiation depends on release of D‐serine from astrocytes. Nature, 463, 232–236.
Herde, M. K., Bohmbach, K., Domingos, C., Vana, N., Komorowska‐Müller, J. A., Passlick, S., Schwarz, I., Jackson, C. J., Dietrich, D., Schwarz, M. K., & Henneberger, C. (2020). Local efficacy of glutamate uptake decreases with synapse size. Cell Reports, 32, 108182.
Hertz, L., Dringen, R., Schousboe, A., & Robinson, S. R. (1999). Astrocytes: Glutamate producers for neurons. Journal of Neuroscience Research, 57, 417–428.
Holten, A. T., & Gundersen, V. (2008). Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: A role for phosphate‐activated glutaminase. Journal of Neurochemistry, 104, 1032–1042.
Holtmaat, A., & Svoboda, K. (2009). Experience‐dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647–658.
Hughes, L., Hawes, C., Monteith, S., & Vaughan, S. (2014). Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma, 251, 395–401.
Jones, E. V., Bernardinelli, Y., Tse, Y. C., Chierzi, S., Wong, T. P., & Murai, K. K. (2011). Astrocytes control glutamate receptor levels at developing synapses through SPARC–β‐integrin interactions. The Journal of Neuroscience, 31, 4154–4165.
Jourdain, P., Bergersen, L. H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., & Volterra, A. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 10, 331–339.
Karlupia, N., Schalek, R. L., Wu, Y., Meirovitch, Y., Wei, D., Charney, A. W., Kopell, B. H., & Lichtman, J. W. (2023). Immersion fixation and staining of multicubic millimeter volumes for electron microscopy‐based connectomics of human brain biopsies. Biological Psychiatry, 94, 352–360.
Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles‐Barley, S., Lee, D., Vázquez‐Reina, A., Kaynig, V., Jones, T. R., Roberts, M., Morgan, J. L., Tapia, J. C., Seung, H. S., Roncal, W. G., Vogelstein, J. T., Burns, R., Sussman, D. L., Priebe, C. E., … Lichtman, J. W. (2015). Saturated reconstruction of a volume of neocortex. Cell, 162, 648–661.
Kikuchi, T., Gonzalez‐Soriano, J., Kastanauskaite, A., Benavides‐Piccione, R., Merchan‐Perez, A., DeFelipe, J., & Blazquez‐Llorca, L. (2020). Volume electron microscopy study of the relationship between synapses and astrocytes in the developing rat somatosensory cortex. Cerebral Cortex, 30, 3800–3819.
Koester, H. J., & Johnston, D. (2005). Target cell‐dependent normalization of transmitter release at neocortical synapses. Science, 308, 863–866.
Korogod, N., Petersen, C. C., & Knott, G. W. (2015). Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife, 4, e05793.
Lanjakornsiripan, D., Pior, B.‐J., Kawaguchi, D., Furutachi, S., Tahara, T., Katsuyama, Y., Suzuki, Y., Fukazawa, Y., & Gotoh, Y. (2018). Layer‐specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nature Communications, 9, 1623.
Lehre, K. P., & Rusakov, D. A. (2002). Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophysical Journal, 83, 125–134.
López‐Hidalgo, M., Hoover, W. B., & Schummers, J. (2016). Spatial organization of astrocytes in ferret visual cortex. Journal of Comparative Neurology, 524, 3561–3576.
Lowe, D. G. (2004). Distinctive image features from scale‐invariant keypoints. International Journal of Computer Vision, 60, 91–110.
Lu, X., Han, X., Meirovitch, Y., Sjöstedt, E., Schalek, R. L., & Lichtman, J. W. (2023). Preserving extracellular space for high‐quality optical and ultrastructural studies of whole mammalian brains. Cell Reports Methods, 3, 100520.
Lushnikova, I., Skibo, G., Muller, D., & Nikonenko, I. (2009). Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus, 19, 753–762.
Marx, M.‐C., Billups, D., & Billups, B. (2015). Maintaining the presynaptic glutamate supply for excitatory neurotransmission. Journal of Neuroscience Research, 93, 1031–1044.
Masson, J., Darmon, M., Conjard, A., Chuhma, N., Ropert, N., Thoby‐Brisson, M., Foutz, A. S., Parrot, S., Miller, G. M., Jorisch, R., Polan, J., Hamon, M., Hen, R., & Rayport, S. (2006). Mice lacking brain/kidney phosphate‐activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal‐directed behavior and die shortly after birth. The Journal of Neuroscience, 26, 4660–4671.
Medvedev, N., Popov, V., Henneberger, C., Kraev, I., Rusakov, D. A., & Stewart, M. G. (2014). Glia selectively approach synapses on thin dendritic spines. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20140047.
Meyer, D., Bonhoeffer, T., & Scheuss, V. (2014). Balance and stability of synaptic structures during synaptic plasticity. Neuron, 82, 430–443.
Nishida, H., & Okabe, S. (2007). Direct astrocytic contacts regulate local maturation of dendritic spines. The Journal of Neuroscience, 27, 331–340.
Norenberg, M. D., & Martinez‐Hernandez, A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Research, 161, 303–310.
Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H. C., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A., & Nedergaard, M. (2009). Uniquely hominid features of adult human astrocytes. The Journal of Neuroscience, 29, 3276–3287.
Ostroff, L. E., Manzur, M. K., Cain, C. K., & Ledoux, J. E. (2014). Synapses lacking astrocyte appear in the amygdala during consolidation of pavlovian threat conditioning. Journal of Comparative Neurology, 522, 2152–2163.
Panatier, A., Arizono, M., & Nägerl, U. V. (2014). Dissecting tripartite synapses with STED microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130597.
Papouin, T., Dunphy, J., Tolman, M., Foley, J. C., & Haydon, P. G. (2017). Astrocytic control of synaptic function. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160154.
Pathak, D., Shields, L. Y., Mendelsohn, B. A., Haddad, D., Lin, W., Gerencser, A. A., Kim, H., Brand, M. D., Edwards, R. H., & Nakamura, K. (2015). The role of mitochondrially derived ATP in synaptic vesicle recycling*♦. Journal of Biological Chemistry, 290, 22325–22336.
Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8–13.
Pellerin, L., Bouzier‐Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., & Magistretti, P. J. (2007). Activity‐dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.
Perez‐Alvarez, A., Navarrete, M., Covelo, A., Martin, E. D., & Araque, A. (2014). Structural and functional plasticity of astrocyte processes and dendritic spine interactions. The Journal of Neuroscience, 34, 12738–12744.
Pnevmatikakis, E. A., & Giovannucci, A. (2017). NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. Journal of Neuroscience Methods, 291, 83–94.
Poskanzer, K. E., & Yuste, R. (2016). Astrocytes regulate cortical state switching in vivo. Proceedings of the National Academy of Sciences, 113, E2675–E2684.
Priebe, N. J. (2016). Mechanisms of orientation selectivity in the primary visual cortex. Annual Review of Vision Science, 14, 85–107.
Qu, H., Håberg, A., Haraldseth, O., Unsgård, G., & Sonnewald, U. (2000). 13C MR spectroscopy study of lactate as substrate for rat brain. Developmental Neuroscience, 22, 429–436.
Rangaraju, V., Calloway, N., & Ryan, T. A. (2014). Activity‐driven local ATP synthesis is required for synaptic function. Cell, 156, 825–835.
Rimmele, T. S., & Rosenberg, P. A. (2016). GLT‐1: The elusive presynaptic glutamate transporter. Neurochemistry International, 98, 19–28.
Ringach, D. L., Shapley, R. M., & Hawken, M. J. (2002). Orientation selectivity in macaque V1: Diversity and laminar dependence. The Journal of Neuroscience, 22, 5639–5651.
Rose, C. R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., & Henneberger, C. (2018). Astroglial glutamate signaling and uptake in the hippocampus. Frontiers in Molecular Neuroscience, 10, 451.
Salmon, C. K., Syed, T. A., Kacerovsky, J. B., Alivodej, N., Schober, A. L., Sloan, T. F., Pratte, M. T., Rosen, M. P., Green, M., Chirgwin‐Dasgupta, A., & Mehta, S. (2023). Organizing principles of astrocytic nanoarchitecture in the mouse cerebral cortex. Current Biology, 33, 957–972.
Santuy, A., Rodríguez, J. R., DeFelipe, J., & Merchán‐Pérez, A. (2018). Study of the size and shape of synapses in the juvenile rat somatosensory cortex with 3D electron microscopy. eNeuro, 5, ENEURO.0377‐17.2017.
Sasaki, T., Ishikawa, T., Abe, R., Nakayama, R., Asada, A., Matsuki, N., & Ikegaya, Y. (2014). Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. The Journal of Physiology, 592, 2771–2783.
Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., & Schmid, B. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682.
Scholl, B., & Fitzpatrick, D. (2020). Cortical synaptic architecture supports flexible sensory computations. Current Opinion in Neurobiology, 64, 41–45.
Scholl, B., Thomas, C. I., Ryan, M. A., Kamasawa, N., & Fitzpatrick, D. (2021). Cortical response selectivity derives from strength in numbers of synapses. Nature, 590, 111–114.
Scholl, B., Wilson, D. E., & Fitzpatrick, D. (2017). Local order within global disorder: Synaptic architecture of visual space. Neuron, 96, 1127–1138.e4.
Scholl, B., Wilson, D. E., Jaepel, J. & Fitzpatrick, D. (2019). Functional logic of layer 2/3 inhibitory connectivity in the ferret visual cortex. Neuron, 104, 451–457.
Semyanov, A., & Verkhratsky, A. (2021). Astrocytic processes: From tripartite synapses to the active milieu. Trends in Neurosciences, 44, 781–792.
Singh, S. K., Stogsdill, J. A., Pulimood, N. S., Dingsdale, H., Kim, Y. H., Pilaz, L.‐J., Kim, I. H., Manhaes, A. C., Rodrigues, W. S., Pamukcu, A., Enustun, E., Ertuz, Z., Scheiffele, P., Soderling, S. H., Silver, D. L., Ji, R.‐R., Medina, A. E., & Eroglu, C. (2016). Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via Hevin. Cell, 164, 183–196.
Sipe, G. O., Petravicz, J., Rikhye, R. V., Garcia, R., Mellios, N., & Sur, M. (2021). Astrocyte glutamate uptake coordinates experience‐dependent, eye‐specific refinement in developing visual cortex. Glia, 69, 1723–1735.
Smith, H. L., Bourne, J. N., Cao, G., Chirillo, M. A., Ostroff, L. E., Watson, D. J., & Harris, K. M. (2016). Mitochondrial support of persistent presynaptic vesicle mobilization with age‐dependent synaptic growth after LTP. eLife, 5, e15275.
Sobczyk, A., Scheuss, V., & Svoboda, K. (2005). NMDA receptor subunit‐dependent Ca2+ signaling in individual hippocampal dendritic spines. The Journal of Neuroscience, 25, 6037–6046.
Soto, J. S., Jami‐Alahmadi, Y., Chacon, J., Moye, S. L., Diaz‐Castro, B., Wohlschlegel, J. A., & Khakh, B. S. (2023). Astrocyte–neuron subproteomes and obsessive–compulsive disorder mechanisms. Nature, 616, 764–773.
Spacek, J. (1985). Three‐dimensional analysis of dendritic spines. III. Glial sheath. Anatomy and Embryology, 171, 245–252.
Starborg, T., Kalson, N. S., Lu, Y., Mironov, A., Cootes, T. F., Holmes, D. F., & Kadler, K. E. (2013). Using transmission electron microscopy and 3View® to determine collagen fibril size and three‐dimensional organization. Nature Protocols, 8, 1433–1448.
Steffens, H., Mott, A. C., Li, S., Wegner, W., Švehla, P., Kan, V. W. Y., Wolf, F., Liebscher, S., & Willig, K. I. (2021). Stable but not rigid: Chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. Science Advances, 7, eabf2806.
Stogsdill, J. A., Ramirez, J., Liu, D., Kim, Y. H., Baldwin, K. T., Enustun, E., Ejikeme, T., Ji, R.‐R., & Eroglu, C. (2017). Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature, 551, 192–197.
Sun, Y., Smirnov, M., Kamasawa, N., & Yasuda, R. (2021). Rapid ultrastructural changes in the PSD and surrounding membrane after induction of structural LTP in single dendritic spines. Journal of Neuroscience, 41, 7003–7014.
Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., & Alberini, C. M. (2011). Astrocyte‐neuron lactate transport is required for long‐term memory formation. Cell, 144, 810–823.
Tan, A. Y., Brown, B. D., Scholl, B., Mohanty, D., & Priebe, N. J. (2011). Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. The Journal of Neuroscience, 31, 12339–12350.
Thomas, C. I., Ryan, M. A., Kamasawa, N., & Scholl, B. (2023). Postsynaptic mitochondria are positioned to support functional diversity of dendritic spines. eLife, 12, RP89682.
Thomas, C. I., Ryan, M. A., Scholl, B., Guerrero‐Given, D., Fitzpatrick, D., & Kamasawa, N. (2021). Targeting functionally characterized synaptic architecture using inherent fiducials and 3D correlative microscopy. Microscopy and Microanalysis, 27, 156–169.
Torres‐Ceja, B., & Olsen, M. L. (2022). A closer look at astrocyte morphology: Development, heterogeneity, and plasticity at astrocyte leaflets. Current Opinion in Neurobiology, 74, 102550.
Tsai, H.‐H., Li, H., Fuentealba, L. C., Molofsky, A. V., Taveira‐Marques, R., Zhuang, H., Tenney, A., Murnen, A. T., Fancy, S. P. J., Merkle, F., Kessaris, N., Alvarez‐Buylla, A., Richardson, W. D., & Rowitch, D. H. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science, 337, 358–362.
Varga, Z., Jia, H., Sakmann, B., & Konnerth, A. (2011). Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. National Academy of Sciences of the United States of America, 108, 15420–15425.
Ventura, R., & Harris, K. M. (1999). Three‐dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19, 6897–6906.
Verkhratsky, A., Nedergaard, M., & Hertz, L. (2015). Why are astrocytes important? Neurochemical Research, 40, 389–401.
Wilson, D. E., Whitney, D. E., Scholl, B., & Fitzpatrick, D. (2016). Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nature Neuroscience, 19, 1003–1009.
Witcher, M. R., Kirov, S. A., & Harris, K. M. (2007). Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia, 55, 13–23.
Zheng, K., Scimemi, A., & Rusakov, D. A. (2008). Receptor actions of synaptically released glutamate: The role of transporters on the scale from nanometers to microns. Biophysical Journal, 95, 4584–4596.
Zhou, B., Zuo, Y.‐X., & Jiang, R.‐T. (2019). Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics, 25, 665–673.