Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer.

Asymmetric composition Contact bubble bilayer Intact membrane Leaflet perfusion Membrane leaflet Membrane perfusion Single-channel recording

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 10 6 2024
pubmed: 10 6 2024
entrez: 10 6 2024
Statut: ppublish

Résumé

Cell membranes are highly intricate systems comprising numerous lipid species and membrane proteins, where channel proteins, lipid molecules, and lipid bilayers, as continuous elastic fabric, collectively engage in multi-modal interplays. Owing to the complexity of the native cell membrane, studying the elementary processes of channel-membrane interactions necessitates a bottom-up approach starting from forming simplified synthetic membranes. This is the rationale for establishing an in vitro membrane reconstitution system consisting of a lipid bilayer with a defined lipid composition and a channel molecule. Recent technological advancements have facilitated the development of asymmetric membranes, and the contact bubble bilayer (CBB) method allows single-channel current recordings under arbitrary lipid compositions in asymmetric bilayers. Here, we present an experimental protocol for the formation of asymmetric membranes using the CBB method. The KcsA potassium channel is a prototypical model channel with huge structural and functional information and thus serves as a reporter of membrane actions on the embedded channels. We demonstrate specific interactions of anionic lipids in the inner leaflet. Considering that the local lipid composition varies steadily in cell membranes, we `present a novel lipid perfusion technique that allows rapidly changing the lipid composition while monitoring the single-channel behavior. Finally, we demonstrate a leaflet perfusion method for modifying the composition of individual leaflets. These techniques with custom synthetic membranes allow for variable experiments, providing crucial insights into channel-membrane interplay in cell membranes.

Identifiants

pubmed: 38856892
doi: 10.1007/978-1-0716-3818-7_1
doi:

Substances chimiques

Lipid Bilayers 0
Potassium Channels 0
prokaryotic potassium channel 0
Bacterial Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-21

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Bio 18:361–374. https://doi.org/10.1038/nrm.2017.16
doi: 10.1038/nrm.2017.16
Skotland T, Sandvig K (2022) Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 86:101160. https://doi.org/10.1016/j.plipres.2022.101160
doi: 10.1016/j.plipres.2022.101160 pubmed: 35288150
Dingjan T, Futerman AH (2021) The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. BioEssays 43:2100021. https://doi.org/10.1002/bies.202100021
doi: 10.1002/bies.202100021
Whitelegge JP (2013) Integral membrane proteins and bilayer proteomics. Anal Chem 85:2558–2568. https://doi.org/10.1021/ac303064a
doi: 10.1021/ac303064a pubmed: 23301778 pmcid: 3664232
Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580. https://doi.org/10.1038/nature04394
doi: 10.1038/nature04394 pubmed: 16319876
Nicolson GL, de Mattos GF (2023) The fluid–mosaic model of cell membranes: a brief introduction, historical features, some general principles, and its adaptation to current information. Biochim Biophys Acta Biomembr 184135. https://doi.org/10.1016/j.bbamem.2023.184135
Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699. https://doi.org/10.1038/nrm2977
doi: 10.1038/nrm2977 pubmed: 20861879
Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14. https://doi.org/10.1038/ncb0107-7
doi: 10.1038/ncb0107-7 pubmed: 17199125
Dixon RE, Navedo MF, Binder MD, Santana LF (2022) Mechanisms and physiological implications of cooperative gating of clustered ion channels. Physiol Rev 102:1159–1210. https://doi.org/10.1152/physrev.00022.2021
doi: 10.1152/physrev.00022.2021 pubmed: 34927454
Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385. https://doi.org/10.1038/nature08147
doi: 10.1038/nature08147 pubmed: 19458714 pmcid: 3169427
Rangamani P (2022) The many faces of membrane tension: challenges across systems and scales. Biochim Biophys Acta Biomembr 1864:183897. https://doi.org/10.1016/j.bbamem.2022.183897
doi: 10.1016/j.bbamem.2022.183897 pubmed: 35231438
Iwamoto M, Oiki S (2021) Physical and chemical interplay between the membrane and a prototypical potassium channel reconstituted on a lipid bilayer platform. Front Mol Neurosci 14:634121. https://doi.org/10.3389/fnmol.2021.634121
doi: 10.3389/fnmol.2021.634121 pubmed: 33716666 pmcid: 7952623
Kessels MM, Qualmann B (2021) Interplay between membrane curvature and the actin cytoskeleton. Curr Opin Cell Biol 68:10–19. https://doi.org/10.1016/j.ceb.2020.08.008
doi: 10.1016/j.ceb.2020.08.008 pubmed: 32927373
Mogilner A, Manhart A (2016) Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu Rev Fluid Mech 50:1–24. https://doi.org/10.1146/annurev-fluid-010816-060238
doi: 10.1146/annurev-fluid-010816-060238
Sarkar P, Chattopadhyay A (2022) Membrane dipole potential: an emerging approach to explore membrane organization and function. J Phys Chem B 126:4415–4430. https://doi.org/10.1021/acs.jpcb.2c02476
doi: 10.1021/acs.jpcb.2c02476 pubmed: 35696090
Wang L (2012) Measurements and implications of the membrane dipole potential. Annu Rev Biochem 81:615–635. https://doi.org/10.1146/annurev-biochem-070110-123033
doi: 10.1146/annurev-biochem-070110-123033 pubmed: 22443933
Marrink SJ, Corradi V, Souza PCT et al (2019) Computational modeling of realistic cell membranes. Chem Rev 119:6184–6226. https://doi.org/10.1021/acs.chemrev.8b00460
doi: 10.1021/acs.chemrev.8b00460 pubmed: 30623647 pmcid: 6509646
Van Meer G (2011) Dynamic transbilayer lipid asymmetry. Cold Spring Harb Perspect Biol 3:a004671. https://doi.org/10.1101/cshperspect.a004671
doi: 10.1101/cshperspect.a004671 pubmed: 21436058 pmcid: 3101844
Clarke RJ, Hossain KR, Cao K (2020) Physiological roles of transverse lipid asymmetry of animal membranes. Biochim Biophys Acta Biomembr 1862:183382. https://doi.org/10.1016/j.bbamem.2020.183382
doi: 10.1016/j.bbamem.2020.183382 pubmed: 32511979
Contreras F-X, Sánchez-Magraner L, Alonso A, Goñi FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779–1786. https://doi.org/10.1016/j.febslet.2009.12.049
doi: 10.1016/j.febslet.2009.12.049 pubmed: 20043909
Pomorski TG, Menon AK (2016) Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 64:69–84. https://doi.org/10.1016/j.plipres.2016.08.003
doi: 10.1016/j.plipres.2016.08.003 pubmed: 27528189 pmcid: 5127727
Allhusen JS, Conboy JC (2017) The ins and outs of lipid flip-flop. Acc Chem Res 50:58–65. https://doi.org/10.1021/acs.accounts.6b00435
doi: 10.1021/acs.accounts.6b00435 pubmed: 27959517
Lorent JH, Levental KR, Ganesan L et al (2020) Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 16:644–652. https://doi.org/10.1038/s41589-020-0529-6
doi: 10.1038/s41589-020-0529-6 pubmed: 32367017 pmcid: 7246138
Siggel M, Bhaskara RM, Hummer G (2019) Phospholipid scramblases remodel the shape of asymmetric membranes. J Phys Chem Lett 10:6351–6354. https://doi.org/10.1021/acs.jpclett.9b02531
doi: 10.1021/acs.jpclett.9b02531 pubmed: 31566982
Wang M, Yi X (2021) Bulging and budding of lipid droplets from symmetric and asymmetric membranes: competition between membrane elastic energy and interfacial energy. Soft Matter 17:5319–5328. https://doi.org/10.1039/d1sm00245g
doi: 10.1039/d1sm00245g pubmed: 33881134
Barlow NE, Kusumaatmaja H, Salehi-Reyhani A et al (2018) Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. J R Soc Interface 15:20180610. https://doi.org/10.1098/rsif.2018.0610
doi: 10.1098/rsif.2018.0610 pubmed: 30464059 pmcid: 6283991
Hossein A, Deserno M (2020) Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys J 118:624–642. https://doi.org/10.1016/j.bpj.2019.11.3398
doi: 10.1016/j.bpj.2019.11.3398 pubmed: 31954503
Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci 111:7898–7905. https://doi.org/10.1073/pnas.1313364111
doi: 10.1073/pnas.1313364111 pubmed: 24850861 pmcid: 4050596
Cox CD, Bavi N, Martinac B (2017) Origin of the force the force-from-lipids principle applied to piezo channels. Curr Top Membr 79:59–96. https://doi.org/10.1016/bs.ctm.2016.09.001
doi: 10.1016/bs.ctm.2016.09.001 pubmed: 28728824
Gao M, Huang X, Song B-L, Yang H (2019) The biogenesis of lipid droplets: lipids take center stage. Prog Lipid Res 75:100989. https://doi.org/10.1016/j.plipres.2019.100989
doi: 10.1016/j.plipres.2019.100989 pubmed: 31351098
M’barek KB, Ajjaji D, Chorlay A et al (2017) ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 41:591–604.e7. https://doi.org/10.1016/j.devcel.2017.05.012
doi: 10.1016/j.devcel.2017.05.012 pubmed: 28579322
van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. https://doi.org/10.1038/nrm2330
doi: 10.1038/nrm2330 pubmed: 18216768 pmcid: 2642958
Shealy RT, Murphy AD, Ramarathnam R et al (2003) Sequence-function analysis of the K
doi: 10.1016/s0006-3495(03)70020-4 pubmed: 12719225 pmcid: 1302856
Shaya D, Findeisen F, Abderemane-Ali F et al (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 426:467–483. https://doi.org/10.1016/j.jmb.2013.10.010
doi: 10.1016/j.jmb.2013.10.010 pubmed: 24120938
Shimizu H, Iwamoto M, Konno T et al (2008) Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132:67–78. https://doi.org/10.1016/j.cell.2007.11.040
doi: 10.1016/j.cell.2007.11.040 pubmed: 18191221
Notti RQ, Walz T (2022) Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci 47:561–569. https://doi.org/10.1016/j.tibs.2022.02.008
doi: 10.1016/j.tibs.2022.02.008 pubmed: 35331611 pmcid: 9847468
Natale AM, Deal PE, Minor DL (2021) Structural insights into the mechanisms and pharmacology of K2P potassium channels. J Mol Biol 433:166995–166995. https://doi.org/10.1016/j.jmb.2021.166995
doi: 10.1016/j.jmb.2021.166995 pubmed: 33887333 pmcid: 8436263
Mandala VS, MacKinnon R (2022) Voltage-sensor movements in the Eag Kv channel under an applied electric field. Proc Natl Acad Sci 119:e2214151119. https://doi.org/10.1073/pnas.2214151119
doi: 10.1073/pnas.2214151119 pubmed: 36331999 pmcid: 9674223
Wisedchaisri G, Tonggu L, McCord E et al (2019) Resting-state structure and gating mechanism of a voltage-gated sodium channel. Cell 178:993–1003.e12. https://doi.org/10.1016/j.cell.2019.06.031
doi: 10.1016/j.cell.2019.06.031 pubmed: 31353218 pmcid: 6688928
Yamakata A, Shimizu H, Oiki S (2015) Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field. Phys Chem Chem Phys 17:21104–21111. https://doi.org/10.1039/c5cp02681d
doi: 10.1039/c5cp02681d pubmed: 26147491
Oiki S (2015) Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. J Physiol 593:2553–2573. https://doi.org/10.1113/jp270025
doi: 10.1113/jp270025 pubmed: 25833254 pmcid: 4500343
Iwamoto M, Oiki S (2019) In bulla functional channel expression systems that mimic bacterial synthetic membranes. Methods Enzymol 621:231–244. https://doi.org/10.1016/bs.mie.2019.02.011
doi: 10.1016/bs.mie.2019.02.011 pubmed: 31128781
Iwamoto M, Oiki S (2013) Amphipathic antenna of an inward rectifier K
doi: 10.1073/pnas.1217323110 pubmed: 23267068
Iwamoto M, Oiki S (2021) Hysteresis of a tension-sensitive K
doi: 10.1021/jacsau.0c00098 pubmed: 34467309 pmcid: 8395652
Das KMP, Shih WM, Wagner G, Nasr ML (2020) Large nanodiscs: a potential game changer in structural biology of membrane protein complexes and virus entry. Front Bioeng Biotechnol 8:539. https://doi.org/10.3389/fbioe.2020.00539
doi: 10.3389/fbioe.2020.00539
Huang Y, Fuller GG, Suja VC (2022) Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interf Sci 304:102666. https://doi.org/10.1016/j.cis.2022.102666
doi: 10.1016/j.cis.2022.102666
Hwang WL, Chen M, Cronin B et al (2008) Asymmetric droplet Interface bilayers. J Am Chem Soc 130:5878–5879. https://doi.org/10.1021/ja802089s
doi: 10.1021/ja802089s pubmed: 18407631
Yanagisawa M, Iwamoto M, Kato A et al (2011) Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. J Am Chem Soc 133:11774–11779. https://doi.org/10.1021/ja2040859
doi: 10.1021/ja2040859 pubmed: 21702488
Pautot S, Frisken BJ, Weitz DA (2003) Engineering asymmetric vesicles. Proc Natl Acad Sci 100:10718–10721. https://doi.org/10.1073/pnas.1931005100
doi: 10.1073/pnas.1931005100 pubmed: 12963816 pmcid: 196870
Liu P, Zabala-Ferrera O, Beltramo PJ (2021) Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys J 120:1755–1764. https://doi.org/10.1016/j.bpj.2021.02.036
doi: 10.1016/j.bpj.2021.02.036 pubmed: 33675759 pmcid: 8204216
Marquardt D, Geier B, Pabst G (2015) Asymmetric lipid membranes: towards more realistic model systems. Membranes 5:180–196. https://doi.org/10.3390/membranes5020180
doi: 10.3390/membranes5020180 pubmed: 25955841 pmcid: 4496639
Iwamoto M, Oiki S (2015) Contact bubble bilayers with flush drainage. Sci Rep 5:9110. https://doi.org/10.1038/srep09110
doi: 10.1038/srep09110 pubmed: 25772819 pmcid: 4360637
Iwamoto M, Oiki S (2019) Lipid bilayer experiments with contact bubble bilayers for patch-clampers. J Vis Exp. https://doi.org/10.3791/58840
Oiki S, Iwamoto M (2018) Lipid bilayers manipulated through monolayer technologies for studies of channel-membrane interplay. Biol Pharm Bull 41:303–311. https://doi.org/10.1248/bpb.b17-00708
doi: 10.1248/bpb.b17-00708 pubmed: 29491206
Iwamoto M, Oiki S (2018) Constitutive boost of a K
doi: 10.1073/pnas.1812282115 pubmed: 30509986 pmcid: 6304998
Iwamoto M, Oiki S (2017) Membrane perfusion of hydrophobic substances around channels embedded in the contact bubble bilayer. Sci Rep 7:6857. https://doi.org/10.1038/s41598-017-07048-4
doi: 10.1038/s41598-017-07048-4 pubmed: 28761089 pmcid: 5537337
White SH (1986) The physical nature of planar bilayer membranes. In: Miller C (ed) Ion channel reconstitution. Plenum Press, New York, pp 3–35
doi: 10.1007/978-1-4757-1361-9_1
Oiki S (2012) Planar lipid bilayer method for studying channel molecules. In: Okada Y (ed) Patch clamp techniques: from beginning to advanced protocols. Springer, Tokyo, pp 229–275
doi: 10.1007/978-4-431-53993-3_16
Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427. https://doi.org/10.1146/annurev.biophys.093008.131234
doi: 10.1146/annurev.biophys.093008.131234 pubmed: 20192774
White SH, von Heijne G, Engelman DM (2022) Cell boundaries: how membranes and their proteins work. Taylor & Francis, Boca Raton
Hammoud Z, Khreich N, Auezova L et al (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76. https://doi.org/10.1016/j.ijpharm.2019.03.063
doi: 10.1016/j.ijpharm.2019.03.063 pubmed: 30959238
Peyret A, Zhao H, Lecommandoux S (2018) Preparation and properties of asymmetric synthetic membranes based on lipid and polymer self-assembly. Langmuir 34:3376–3385. https://doi.org/10.1021/acs.langmuir.7b04233
doi: 10.1021/acs.langmuir.7b04233 pubmed: 29486556
Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci 69:3561–3566. https://doi.org/10.1073/pnas.69.12.3561
doi: 10.1073/pnas.69.12.3561 pubmed: 4509315 pmcid: 389821
Oliveira ON, Caseli L, Ariga K (2022) The past and the future of langmuir and langmuir–blodgett films. Chem Rev 122:6459–6513. https://doi.org/10.1021/acs.chemrev.1c00754
doi: 10.1021/acs.chemrev.1c00754 pubmed: 35113523
de Gennes PG, Brochard-Wyart F, Quere D (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York
Funakoshi K, Suzuki H, Takeuchi S (2006) Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem 78:8169–8174. https://doi.org/10.1021/ac0613479
doi: 10.1021/ac0613479 pubmed: 17165804
Bayley H, Cronin B, Heron A et al (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208. https://doi.org/10.1039/b808893d
doi: 10.1039/b808893d pubmed: 19396383 pmcid: 2763081
Ando H, Kuno M, Shimizu H et al (2005) Coupled K
doi: 10.1085/jgp.200509377 pubmed: 16260841 pmcid: 2266609
Kuno M, Ando H, Morihata H et al (2009) Temperature dependence of proton permeation through a voltage-gated proton channel. J Gen Physiol 134:191–205. https://doi.org/10.1085/jgp.200910213
doi: 10.1085/jgp.200910213 pubmed: 19720960 pmcid: 2740922
Oiki S, Koeppe RE, Andersen OS (1995) Voltage-dependent gating of an asymmetric gramicidin channel. Proc Natl Acad Sci 92:2121–2125. https://doi.org/10.1073/pnas.92.6.2121
doi: 10.1073/pnas.92.6.2121 pubmed: 7534411 pmcid: 42435
Oiki S, Danho W, Madison V, Montal M (1988) M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc Natl Acad Sci 85:8703–8707. https://doi.org/10.1073/pnas.85.22.8703
doi: 10.1073/pnas.85.22.8703 pubmed: 2460876 pmcid: 282529
Iwamoto M, Shimizu H, Inoue F et al (2006) Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J Biol Chem 281:28379–28386. https://doi.org/10.1074/jbc.m602018200
doi: 10.1074/jbc.m602018200 pubmed: 16835240
Taylor GJ, Venkatesan GA, Collier CP, Sarles SA (2015) Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter 11:7592–7605. https://doi.org/10.1039/c5sm01005e
doi: 10.1039/c5sm01005e pubmed: 26289743
Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, New York/London
Barry PH (1994) JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Methods 51:107–116. https://doi.org/10.1016/0165-0270(94)90031-0
doi: 10.1016/0165-0270(94)90031-0 pubmed: 8189746
Alvarez O, Latorre R (1978) Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J 21:1–17. https://doi.org/10.1016/s0006-3495(78)85505-2
doi: 10.1016/s0006-3495(78)85505-2 pubmed: 620076 pmcid: 1473368
Trapani JG, Korn SJ (2003) Effect of external pH on activation of the Kv1.5 potassium channel. Biophys J 84:195–204. https://doi.org/10.1016/s0006-3495(03)74842-5
doi: 10.1016/s0006-3495(03)74842-5 pubmed: 12524275 pmcid: 1302603
Miedema H (2002) Surface potentials and the calculated selectivity of ion channels. Biophys J 82:156–159. https://doi.org/10.1016/s0006-3495(02)75382-4
doi: 10.1016/s0006-3495(02)75382-4 pubmed: 11751304 pmcid: 1302457
Burtscher V, Hotka M, Freissmuth M, Sandtner W (2020) An electrophysiological approach to measure changes in the membrane surface potential in real time. Biophys J 118:813–825. https://doi.org/10.1016/j.bpj.2019.06.033
doi: 10.1016/j.bpj.2019.06.033 pubmed: 31409481
Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K
doi: 10.1085/jgp.111.6.741 pubmed: 9607934 pmcid: 2217152
Oakes V, Furini S, Domene C (1862) Effect of anionic lipids on ion permeation through the KcsA K
doi: 10.1016/j.bbamem.2020.183406
Frolov VA, Shnyrova AV, Zimmerberg J (2011) Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol 3:a004747. https://doi.org/10.1101/cshperspect.a004747
doi: 10.1101/cshperspect.a004747 pubmed: 21646378 pmcid: 3220359

Auteurs

Yuka Matsuki (Y)

Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.

Masayuki Iwamoto (M)

Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.

Shigetoshi Oiki (S)

Biomedical Imaging Research Center, University of Fukui, Fukui, Japan. oiki@u-fukui.ac.jp.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH