Residues of atrazine and diuron in rice straw, soils, and air post herbicide-contaminated straw biomass burning.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
10 06 2024
Historique:
received: 17 02 2024
accepted: 06 06 2024
medline: 11 6 2024
pubmed: 11 6 2024
entrez: 10 6 2024
Statut: epublish

Résumé

This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM

Identifiants

pubmed: 38858445
doi: 10.1038/s41598-024-64291-2
pii: 10.1038/s41598-024-64291-2
doi:

Substances chimiques

Atrazine QJA9M5H4IM
Herbicides 0
Soil 0
Diuron 9I3SDS92WY
Soil Pollutants 0
Air Pollutants 0
Particulate Matter 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13327

Subventions

Organisme : Chiang Mai University
ID : Fundamental Fund
Organisme : the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research, and Innovation
ID : B40G660030

Informations de copyright

© 2024. The Author(s).

Références

Duc, H. N., Bang, H. Q., Quan, N. H. & Quang, N. X. Impact of biomass burnings in Southeast Asia on air quality and pollutant transport during the end of the 2019 dry season. Environ. Monit. Assess. 193, 565. https://doi.org/10.1007/s10661-021-09259-9 (2021).
doi: 10.1007/s10661-021-09259-9 pubmed: 34383149
Phairuang, W. et al. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 247, 238–247. https://doi.org/10.1016/j.envpol.2019.01.001 (2019).
doi: 10.1016/j.envpol.2019.01.001 pubmed: 30685664
Suriyawong, P. et al. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 9(3), e14261. https://doi.org/10.1016/j.heliyon.2023.e14261 (2023).
doi: 10.1016/j.heliyon.2023.e14261 pubmed: 36938473 pmcid: 10018570
Junpen, A., Pansuk, J., Kamnoet, O., Cheewaphongphan, P. & Garivait, S. Emission of air pollutants from rice residue open burning in Thailand. Atmosphere 9, 449. https://doi.org/10.3390/atmos9110449 (2018).
doi: 10.3390/atmos9110449
Insian, W., Yabueng, N., Wiriya, W. & Chantara, S. Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment. Environ. Pollut. 293, 118488. https://doi.org/10.1016/j.envpol.2021.118488 (2022).
doi: 10.1016/j.envpol.2021.118488 pubmed: 34793907
Pongpiachan, S., Hattayanone, M. & Cao, J. Effect of agricultural waste burning season on PM2.5-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern Thailand. Atmos. Pollut. Res. 8(6), 1069–1080. https://doi.org/10.1016/j.apr.2017.04.009 (2017).
doi: 10.1016/j.apr.2017.04.009
Punsompong, P. & Chantara, S. Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmos. Pollut. Res. 9(6), 1038–1051. https://doi.org/10.1016/j.apr.2018.04.003 (2018).
doi: 10.1016/j.apr.2018.04.003
Bossi, R., Vorkamp, K. & Skov, H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environ. Pollut. 217, 4–10. https://doi.org/10.1016/j.envpol.2015.12.026 (2016).
doi: 10.1016/j.envpol.2015.12.026 pubmed: 26809479
Reisen, F. & Brown, S. K. Australian firefighters’ exposure to air toxics during bushfire burns of autumn 2005 and 2006. Environ. Int. 35(2), 342–352. https://doi.org/10.1016/j.envint.2008.08.011 (2009).
doi: 10.1016/j.envint.2008.08.011 pubmed: 18829114
Genualdi, S. A. et al. Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America. Environ. Sci. Technol. 43(4), 1061–1066. https://doi.org/10.1021/es802163c (2009).
doi: 10.1021/es802163c pubmed: 19320158 pmcid: 4159143
Gianni, E., Moreno-Rodríguez, D., Jankovič, L., Scholtzová, E. & Pospíšil, M. How herbicides like atrazine and diuron interact with the spiral halloysite structure. J. Environ. Chem. Eng. 10(6), 108785. https://doi.org/10.1016/j.jece.2022.108785 (2022).
doi: 10.1016/j.jece.2022.108785
Beltrán-Flores, E., Torán, J., Caminal, G., Blánquez, P. & Sarrà, M. The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Sci. Total Environ. 728, 138414. https://doi.org/10.1016/j.scitotenv.2020.138414 (2020).
doi: 10.1016/j.scitotenv.2020.138414 pubmed: 32344227
Severo, E. S. et al. Ecological risk of pesticide contamination in a Brazilian river located near a rural area: A study of biomarkers using zebrafish embryos. Ecotoxicol. Environ. Saf. 190, 110071. https://doi.org/10.1016/j.ecoenv.2019.110071 (2020).
doi: 10.1016/j.ecoenv.2019.110071 pubmed: 31841896
Zaluski, A. B. et al. Atrazine and diuron effects on survival, embryo development, and behavior in larvae and adult zebrafish. Front. Pharmacol. https://doi.org/10.3389/fphar.2022.841826 (2022).
doi: 10.3389/fphar.2022.841826 pubmed: 35444550 pmcid: 9014172
Mohammed, A. M., Huovinen, M. & Vähäkangas, K. H. Toxicity of diuron metabolites in human cells. Environ. Toxicol. Pharmacol. 78, 103409. https://doi.org/10.1016/j.etap.2020.103409 (2020).
doi: 10.1016/j.etap.2020.103409 pubmed: 32416162
Lagunas-Basave, B. et al. Occurrence and risk assessment of atrazine and diuron in well and surface water of a cornfield rural region. Water 14, 3790. https://doi.org/10.3390/w14223790 (2022).
doi: 10.3390/w14223790
Vonberg, D. et al. Atrazine soil core residue analysis from an agricultural field 21 years after its ban. J. Environ. Qual. 43(4), 1450–1459. https://doi.org/10.2134/jeq2013.12.0497 (2014).
doi: 10.2134/jeq2013.12.0497 pubmed: 25603092
Meng, W. et al. Residual characteristics of atrazine and its metabolites in the Liaoning province of China. Separations 9, 397. https://doi.org/10.3390/separations9120397 (2022).
doi: 10.3390/separations9120397
Ma, L. Y. et al. Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. Environ. Int. 131, 105014. https://doi.org/10.1016/j.envint.2019.105014 (2019).
doi: 10.1016/j.envint.2019.105014 pubmed: 31351384
Pérez, D. J., Doucette, W. J. & Moore, M. T. Atrazine uptake, translocation, bioaccumulation and biodegradation in cattail (Typha latifolia) as a function of exposure time. Chemosphere 287, 132104. https://doi.org/10.1016/j.chemosphere.2021.132104 (2022).
doi: 10.1016/j.chemosphere.2021.132104 pubmed: 34523452
Giacomazzi, S. & Cochet, N. Environmental impact of diuron transformation: A review. Chemosphere 56(11), 1021–1032. https://doi.org/10.1016/j.chemosphere.2004.04.061 (2004).
doi: 10.1016/j.chemosphere.2004.04.061 pubmed: 15276715
Das, S. et al. Atrazine toxicity: The possible role of natural products for effective treatment. Plants 12, 2278. https://doi.org/10.3390/plants12122278 (2023).
doi: 10.3390/plants12122278 pubmed: 37375903 pmcid: 10301673
Adesiyan, A. C., Oyejola, T. O., Abarikwu, S. O., Oyeyemi, M. O. & Farombi, E. O. Selenium provides protection to the liver but not the reproductive organs in an atrazine-model of experimental toxicity. Exp. Toxicol. Pathol. 63, 201–207. https://doi.org/10.1016/j.etp.2009.11.008 (2011).
doi: 10.1016/j.etp.2009.11.008 pubmed: 20083397
Breckenridge, C. B. et al. Changes in sensitivity to the effects of atrazine on the luteinizing hormone surge in female sprague-dawley rats after repeated daily doses: Correlation with liver enzyme expression. Birth Defects Res. 110, 246–258. https://doi.org/10.1002/bdr2.1130 (2018).
doi: 10.1002/bdr2.1130 pubmed: 29134775
Durand, P. et al. Effects of a mixture of low doses of atrazine and benzo [a] pyrene on the rat seminiferous epithelium either during or after the establishment of the blood-testis barrier in the rat seminiferous tubule culture model. Toxicol. Vitro 62, 104699. https://doi.org/10.1016/j.tiv.2019.104699 (2020).
doi: 10.1016/j.tiv.2019.104699
Pandey, N., Maske, P., Mote, C. & Dighe, V. Exposure to Atrazine through gestation and lactation period led to impaired sexual maturation and subfertility in F1 male rats with congenital deformities in F2 progeny. Food Chem. Toxicol. 157, 112586. https://doi.org/10.1016/j.fct.2021.112586 (2021).
doi: 10.1016/j.fct.2021.112586 pubmed: 34600026
Ahmed, Y. H., AbuBakr, H. O., Ahmad, I. M. & Ahmed, Z. S. O. Histopathological, immunohistochemical, and molecular alterations in brain tissue and submandibular salivary gland of atrazine-induced toxicity in male rats. Environ. Sci. Pollut. Res. Int. 29, 30697–30711. https://doi.org/10.1007/s11356-021-18399-x (2022).
doi: 10.1007/s11356-021-18399-x pubmed: 34994930
Dai, X. Y. et al. Atrazine-induced oxidative damage via modulating xenobiotic-sensing nuclear receptors and cytochrome P450 systems in cerebrum and antagonism of lycopene. Food Chem. Toxicol. 170, 113462. https://doi.org/10.1016/j.fct.2022.113462 (2022).
doi: 10.1016/j.fct.2022.113462 pubmed: 36216167
Lebov, J. F. et al. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 73, 3–12. https://doi.org/10.1136/oemed-2014-102615 (2016).
doi: 10.1136/oemed-2014-102615 pubmed: 26177651
Olayinka, E. T., Ore, A., Adewole, K. E. & Oyerinde, O. Evaluation of the toxicological effects of atrazine-metolachlor in male rats: In vivo and in silico studies. Environ. Anal. Health Toxicol. 37, e2022021. https://doi.org/10.5620/eaht.2022021 (2022).
doi: 10.5620/eaht.2022021 pubmed: 36262065 pmcid: 9582417
Cardoso, A. P. et al. Dose-response of diuron [3-(3,4- dichlorophenyl)-1,1-dimethylurea] in the urothelial mucosa of Wistar rats. Toxicology 312, 1–5. https://doi.org/10.1016/j.tox.2013.07.007 (2013).
doi: 10.1016/j.tox.2013.07.007 pubmed: 23876856
Huovinen, M., Loikkanen, J., Naarala, J. & Vähäkangas, K. Toxicology of diuron in human cancer cells. Toxicol. Vitro 29, 1577–1586. https://doi.org/10.1016/j.tiv.2015.06.013 (2015).
doi: 10.1016/j.tiv.2015.06.013
Cardone, A., Comitato, R. & Angelini, F. Spermatogenesis, epididymis morphology and plasma sex steroid secretion in the male lizard Podarcis sicula exposed to diuron. Environ. Res. 108, 214–223. https://doi.org/10.1016/j.envres.2008.07.011 (2008).
doi: 10.1016/j.envres.2008.07.011 pubmed: 18760409
Da Rocha, M. S. et al. Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat. Toxicol. Sci. 113, 37–44. https://doi.org/10.1093/toxsci/kfp241 (2010).
doi: 10.1093/toxsci/kfp241 pubmed: 19812366
Mansano, A. S. et al. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. Ecotoxicol. Environ. Saf. 201, 110829. https://doi.org/10.1016/j.ecoenv.2020.110829 (2020).
doi: 10.1016/j.ecoenv.2020.110829 pubmed: 32531577
Environmental Protection Agency (EPA). Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air, Compendium Method IO-2.1. (1999). https://www.epa.gov/sites/default/files/2019-11/documents/mthd-2-1.pdf . Accessed 8 Nov 2023.
Environmental Protection Agency (EPA). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Compendium Method TO-10A. (1999). https://www.epa.gov/sites/default/files/2016-02/documents/to-10ar.pdf . Accessed 8 Nov 2023.
Valverde, M. G., Bueno, M. J. M., Gómez-Ramos, M. M., Díaz-Galiano, F. J. & Fernández-Alba, A. R. Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils. MethodsX 8, 101290. https://doi.org/10.1016/j.mex.2021.101290 (2021).
doi: 10.1016/j.mex.2021.101290 pubmed: 34434810 pmcid: 8374302
Wiriya, W., Prapamontol, T. & Chantara, S. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmos. Res. 124, 109–122. https://doi.org/10.1016/j.atmosres.2012.12.014 (2013).
doi: 10.1016/j.atmosres.2012.12.014
Blanchoud, H., Alliot, F., Chen, N. & Valdes, D. Rapid SPE—LC MS/MS analysis for atrazine, its by-products, simazine and S metolachlor in groundwater samples. MethodsX 7, 100824. https://doi.org/10.1016/j.mex.2020.100824 (2020).
doi: 10.1016/j.mex.2020.100824 pubmed: 32300542 pmcid: 7152673
Dhammapala, R. et al. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmos. Environ. 41(12), 2660–2669. https://doi.org/10.1016/j.atmosenv.2006.11.023 (2007).
doi: 10.1016/j.atmosenv.2006.11.023
Kawichai, S. et al. Seasonal variation and sources estimation of PM2.5 bound PAHs from the ambient air of Chiang Mai City: An all-year-round study in 2017. Chiang Mai J. Sci. 47(5), 958–972 (2020).
Environmental Protection Agency (EPA). Reregistration Eligibility Decision for 2,4-D. (2005). https://archive.epa.gov/pesticides/reregistration/web/pdf/24d_red.pdf . Accessed 8 Nov 2023.
Boivin, A., Amellal, S., Schiavon, N. & van Genuchten, MTh. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ. Pollut. 138, 92–99. https://doi.org/10.1016/j.envpol.2005.02.016 (2005).
doi: 10.1016/j.envpol.2005.02.016 pubmed: 16023914
Morgan, E. R. & Brunson, M. W. Toxicities of agricultural pesticides to selected aquatic organisms. SRAC Publ. 4600, 1–28 (2002).
Muhammad, J. B. et al. Biodegradation potential of 2,4 dichlorophenoxyacetic acid by Cupriavidus campinensis isolated from rice farm cultivated soil. Case Stud. Chem. Environ. Eng. 8, 100434. https://doi.org/10.1016/j.cscee.2023.100434 (2023).
doi: 10.1016/j.cscee.2023.100434
Lawal, I. M. et al. Adsorption of abattoir wastewater contaminants by coconut shell-activated carbon. In Sustainability Challenges and Delivering Practical Engineering Solutions Advances in Science, Technology and Innovation (eds Salih, G. H. A. & Saeed, R. A.) (Springer, 2023). https://doi.org/10.1007/978-3-031-26580-8_22 .
doi: 10.1007/978-3-031-26580-8_22
Brucha, G. et al. 2,4-Dichlorophenoxyacetic acid degradation in methanogenic mixed cultures obtained from Brazilian Amazonian soil samples. Biodegradation 32, 419–433. https://doi.org/10.1007/s10532-021-09940-3 (2021).
doi: 10.1007/s10532-021-09940-3 pubmed: 33877512 pmcid: 8260542
Jagaba, A. H. et al. A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. J. Water Process Eng. 42, 102178. https://doi.org/10.1016/j.jwpe.2021.102178 (2021).
doi: 10.1016/j.jwpe.2021.102178
Meftault, IMd., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Movement and fate of 2,4-D in urban soils: A potential environmental health concern. ACS Omega 5(22), 13287–13295. https://doi.org/10.1021/acsomega.0c01330 (2020).
doi: 10.1021/acsomega.0c01330
Rostami, S. et al. Current methods and technologies for degradation of atrazine in contaminated soil and water: A review. Environ. Technol. Innov. 24, 102019. https://doi.org/10.1016/j.eti.2021.102019 (2021).
doi: 10.1016/j.eti.2021.102019
Książczak, A., Drożdżewska, K. & Boniuk, H. Thermal decomposition of triazine herbicides II. 6-Chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and its metabolites. J. Therm. Anal. Calorim. 65, 473–479. https://doi.org/10.1023/A:1017985204208 (2001).
doi: 10.1023/A:1017985204208
Lu, Y., Liu, Y., Tang, C., Chen, J. & Liu, G. Heat/PMS degradation of atrazine: Theory and kinetic studies. Processes 10, 941. https://doi.org/10.3390/pr10050941 (2022).
doi: 10.3390/pr10050941
Gómez, J. P., Bruneau, C., Soyer, N. & Brault, A. Identification of thermal degradation products from diuron and iprodione. J. Agric. Food Chem. 30, 180–182. https://doi.org/10.1021/JF00109A039 (1982).
doi: 10.1021/JF00109A039
Růžičková, J. et al. The occurrence of pesticides and their residues in char produced by the combustion of wood pellets in domestic boilers. Fuel 293, 120452. https://doi.org/10.1016/j.fuel.2021.120452 (2021).
doi: 10.1016/j.fuel.2021.120452
Bush, P. B., Neary, D. G. & McMahon, C. K. Fire and pesticides: A review of air quality consideration. Miscellaneous publications. (2000). https://www.srs.fs.usda.gov/pubs/ja/ja_bush001.pdf .
Chang, J. et al. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. Chemosphere 307, 136006. https://doi.org/10.1016/j.chemosphere.2022.136006 (2022).
doi: 10.1016/j.chemosphere.2022.136006 pubmed: 35973488
Zaller, J. G. et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci. Total Environ. 838(Part 2), 156012. https://doi.org/10.1016/j.scitotenv.2022.156012 (2022).
doi: 10.1016/j.scitotenv.2022.156012 pubmed: 35597361 pmcid: 7614392
Punsompong, P., Pani, S. K., Wang, S. H. & Pham, T. T. B. Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmos. Environ. 247, 118176. https://doi.org/10.1016/j.atmosenv.2020.118176 (2021).
doi: 10.1016/j.atmosenv.2020.118176
Chen, K., Mackie, J. C., Kennedy, E. M. & Dlugogorski, B. Z. Determination of toxic products released in combustion of pesticides. Progress Energy Combust. Sci. 38(3), 400–418. https://doi.org/10.1016/j.pecs.2012.01.002 (2012).
doi: 10.1016/j.pecs.2012.01.002
Alves, C. et al. Organic compounds in aerosols from selected European sites: Biogenic versus anthropogenic sources. Atmos. Environ. 59, 243–255. https://doi.org/10.1016/j.atmosenv.2012.06.013 (2012).
doi: 10.1016/j.atmosenv.2012.06.013
Vu, T. V., Delgado-Saborit, J. M. & Harrison, R. M. Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ. 122, 114–132. https://doi.org/10.1016/j.atmosenv.2015.09.027 (2015).
doi: 10.1016/j.atmosenv.2015.09.027
Pereira de Albuquerque, F., de Oliveira, J. L., Moschini-Carlos, V. & Fernandez, F. L. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. Sci. Total Environ. 700, 134868 (2020).
doi: 10.1016/j.scitotenv.2019.134868
Boonupara, T., Udomkun, P., Khan, E. & Kajitvichyanukul, P. Airborne pesticides from agricultural practices: A critical review of pathways, influencing factors, and human health implications. Toxics 11, 858. https://doi.org/10.3390/toxics11100858 (2023).
doi: 10.3390/toxics11100858 pubmed: 37888709 pmcid: 10611335
Parrón, T., Requena, M., Hernández, A. F. & Alarcón, R. Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol. Lett. 230, 157–165. https://doi.org/10.1016/j.toxlet.2013.11.009 (2013).
doi: 10.1016/j.toxlet.2013.11.009 pubmed: 24269242
Zhang, J. et al. Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environ. Sci. Technol. 50, 435–443. https://doi.org/10.1021/acs.est.5b03731 (2016).
doi: 10.1021/acs.est.5b03731 pubmed: 26647222
Rayner, J. L. & Fenton, S. E. Atrazine: An environmental endocrine disruptor that alters mammary gland development and tumor susceptibility. In Environment and Breast Cancer (ed. Russo, J.) (Springer, 2011). https://doi.org/10.1007/978-1-4419-9896-5_9 .
doi: 10.1007/978-1-4419-9896-5_9
Liu, Z. et al. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere 148, 163–170. https://doi.org/10.1016/j.chemosphere.2016.01.007 (2016).
doi: 10.1016/j.chemosphere.2016.01.007 pubmed: 26803580
Fakinle, B. S. et al. Quantification and health impact assessment of polycyclic aromatic hydrocarbons (PAHs) emissions from crop residue combustion. Heliyon 8(3), e09113. https://doi.org/10.1016/j.heliyon.2022.e09113 (2022).
doi: 10.1016/j.heliyon.2022.e09113 pubmed: 35342830 pmcid: 8941160
Lawal, A. T. Polycyclic aromatic hydrocarbons: A review. Cogent Environ. Sci. 3, 1339841. https://doi.org/10.1080/23311843.2017.1339841 (2017).
doi: 10.1080/23311843.2017.1339841
Kanzari, F. et al. Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc River and the Berre lagoon, France. Environ. Sci. Pollut. Res. 19, 559–576. https://doi.org/10.1007/s11356-011-0582-5 (2012).
doi: 10.1007/s11356-011-0582-5
Qi, W., Liu, H., Pernet-Coudrier, B. & Qu, J. Polycyclic aromatic hydrocarbons in wastewater, WWTPs effluents and in the recipient waters of Beijing, China. Environ. Sci. Pollut. Control 20, 4254–4260. https://doi.org/10.1007/s11356-012-1435-6 (2013).
doi: 10.1007/s11356-012-1435-6
Kannan, K., Johnson-Restrepo, Y., Yohn, S., Giesy, J. & Long, D. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan Inland lakes. Environ. Sci. Technol. 39, 4700–4706. https://doi.org/10.1016/j.envpol.2009.01.023 (2005).
doi: 10.1016/j.envpol.2009.01.023 pubmed: 16053066
Zhang, H. et al. Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: A brief review. Int. J. Environ. Res. Public Health 19, 3944 (2022).
doi: 10.3390/ijerph19073944 pubmed: 35409624 pmcid: 8998094
McGrath, T. E., Chan, W. G. & Hajaligol, M. R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrol. 66(1–2), 51–70. https://doi.org/10.1016/S0165-2370(02)00105-5 (2003).
doi: 10.1016/S0165-2370(02)00105-5
De Gennaro, G. et al. Discontinuous and continuous indoor air quality monitoring in homes with fireplaces or wood stoves as heating system. Int. J. Environ. Res. Public Health 13(1), 78. https://doi.org/10.3390/ijerph13010078 (2016).
doi: 10.3390/ijerph13010078
Samburova, V. et al. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 568, 391–401. https://doi.org/10.1016/j.scitotenv.2016.06.026 (2016).
doi: 10.1016/j.scitotenv.2016.06.026 pubmed: 27304373
Yin, H. & Xu, L. Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: Concentrations, sources, and health risks. J. Clean. Prod. 177, 674–683. https://doi.org/10.1016/j.jclepro.2017.12.263 (2018).
doi: 10.1016/j.jclepro.2017.12.263
Woodrow, J. E., Gibson, K. A. & Seiber, J. N. Pesticides and related toxicants in the atmosphere. Rev. Environ. Contamin. Toxicol. 247, 147–196. https://doi.org/10.1007/398_2018_19 (2019).
doi: 10.1007/398_2018_19

Auteurs

Suteekan Lamnoi (S)

Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.

Thirasant Boonupara (T)

Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.

Sulak Sumitsawan (S)

Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.

Patipat Vongruang (P)

School of Public Health, Environmental Health, University of Phayao, Phayao, 56000, Thailand.

Tippawan Prapamontol (T)

Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.

Patchimaporn Udomkun (P)

Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand. udomkun.patchimaporn@gmail.com.
Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand. udomkun.patchimaporn@gmail.com.

Puangrat Kaewlom (P)

Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand. kpuangrat@gmail.com.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH