Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
10 Jun 2024
10 Jun 2024
Historique:
received:
06
12
2023
accepted:
06
05
2024
medline:
11
6
2024
pubmed:
11
6
2024
entrez:
10
6
2024
Statut:
aheadofprint
Résumé
Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified
Identifiants
pubmed: 38858457
doi: 10.1038/s41588-024-01787-7
pii: 10.1038/s41588-024-01787-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).
pubmed: 31521533
doi: 10.1016/S1474-4422(19)30287-X
Rehm, H. L. et al. ClinGen—the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).
pubmed: 26014595
pmcid: 4474187
doi: 10.1056/NEJMsr1406261
Waschbüsch, D. et al. LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS ONE 9, e111632 (2014).
pubmed: 25360523
pmcid: 4216093
doi: 10.1371/journal.pone.0111632
McGrath, E., Waschbüsch, D., Baker, B. M. & Khan, A. R. LRRK2 binds to the Rab32 subfamily in a GTP-dependent manner via its armadillo domain. Small GTPases 12, 133–146 (2021).
pubmed: 31552791
doi: 10.1080/21541248.2019.1666623
Berwick, D. C., Heaton, G. R., Azeggagh, S. & Harvey, K. LRRK2 biology from structure to dysfunction: research progresses, but the themes remain the same. Mol. Neurodegener. 14, 49 (2019).
pubmed: 31864390
pmcid: 6925518
doi: 10.1186/s13024-019-0344-2
Tolosa, E., Vila, M., Klein, C. & Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020).
pubmed: 31980808
doi: 10.1038/s41582-019-0301-2
Taymans, J.-M. et al. Perspective on the current state of the LRRK2 field. NPJ Park. Dis. 9, 104 (2023).
doi: 10.1038/s41531-023-00544-7
Shino, M. Y. et al. Familial aggregation of Parkinson’s disease in a multiethnic community-based case-control study. Mov. Disord. 25, 2587–2594 (2010).
pubmed: 20842689
pmcid: 2978761
doi: 10.1002/mds.23361
Farlow, J. L. et al. Whole-exome sequencing in familial Parkinson disease. JAMA Neurol. 73, 68 (2016).
pubmed: 26595808
pmcid: 4946647
doi: 10.1001/jamaneurol.2015.3266
Hernandez, D. G., Reed, X. & Singleton, A. B. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem. 139, 59–74 (2016).
pubmed: 27090875
pmcid: 5155439
doi: 10.1111/jnc.13593
Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 91, 795–808 (2020).
pubmed: 32576618
doi: 10.1136/jnnp-2019-322338
Bandres-Ciga, S., Diez-Fairen, M., Kim, J. J. & Singleton, A. B. Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782 (2020).
pubmed: 31991247
pmcid: 7064061
doi: 10.1016/j.nbd.2020.104782
Parkinson’s disease gene curation expert panel. ClinGen https://clinicalgenome.org/affiliation/40079/ (2024).
Povysil, G. et al. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat. Rev. Genet. 20, 747–759 (2019).
pubmed: 31605095
doi: 10.1038/s41576-019-0177-4
Makarious, M. B. et al. Large-scale rare variant burden testing in Parkinson’s disease. Brain 146, 4622–4632 (2023).
pubmed: 37348876
pmcid: 10629770
doi: 10.1093/brain/awad214
Smith, B. N. et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84, 324–331 (2014).
pubmed: 25374358
pmcid: 4521390
doi: 10.1016/j.neuron.2014.09.027
Kenna, K. P. et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042 (2016).
pubmed: 27455347
pmcid: 5560030
doi: 10.1038/ng.3626
Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283 (2018).
pmcid: 5867896
doi: 10.1016/j.neuron.2018.02.027
Van der Auwera, G. D. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, Inc., 2020).
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).
doi: 10.1093/biomet/80.1.27
Zhao, Z. et al. UK Biobank whole-exome sequence binary phenome analysis with robust region-based rare-variant test. Am. J. Hum. Genet. 106, 3–12 (2020).
pubmed: 31866045
doi: 10.1016/j.ajhg.2019.11.012
Liu, Y. et al. ACAT: a fast and powerful P value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410–421 (2019).
pubmed: 30849328
pmcid: 6407498
doi: 10.1016/j.ajhg.2019.01.002
Genome Aggregation Database Consortium et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7
Lara Ordóñez, A. J., Fasiczka, R., Naaldijk, Y. & Hilfiker, S. Rab GTPases in Parkinson’s disease: a primer. Essays Biochem. 65, 961–974 (2021).
pubmed: 34414419
pmcid: 8709891
doi: 10.1042/EBC20210016
Steger, M. et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. eLife 6, e31012 (2017).
pubmed: 29125462
pmcid: 5695910
doi: 10.7554/eLife.31012
Purlyte, E. et al. Rab29 activation of the Parkinson’s disease-associated LRRK2 kinase. EMBO J. 37, 1–18 (2018).
pubmed: 29212815
doi: 10.15252/embj.201798099
Di Maio, R. et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 10, eaar5429 (2018).
pubmed: 30045977
pmcid: 6344941
doi: 10.1126/scitranslmed.aar5429
Kalogeropulou, A. F. et al. Impact of 100 LRRK2 variants linked to Parkinson’s disease on kinase activity and microtubule binding. Biochem. J. 479, 1759–1783 (2022).
pubmed: 35950872
doi: 10.1042/BCJ20220161
Sheng, Z. et al. Ser
pubmed: 23241745
doi: 10.1126/scitranslmed.3004485
Fraser, K. B. et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov. Disord. 31, 1543–1550 (2016).
pubmed: 27297049
pmcid: 5053851
doi: 10.1002/mds.26686
Zhou, H. et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 12, 260–271 (2013).
pubmed: 23186163
doi: 10.1021/pr300630k
Zhu, H. et al. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 382, 1404–1411 (2023).
pubmed: 38127736
pmcid: 10786121
doi: 10.1126/science.adi9926
Gustavsson, E. K. et al. RAB32 Ser71Arg in autosomal dominant Parkinson’s disease: linkage, association, and functional analyses. Lancet Neurol. 23, 603–614 (2024).
Khan, A. R., Kecman, T. PDB entry - 6FF8. Crystal structure of uncomplexed Rab32 in the active GTP-bound state at 2.13 angstrom resolution. Protein Data Bank https://doi.org/10.2210/pdb6ff8/pdb (2024).
Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).
pubmed: 1564476
pmcid: 1014720
doi: 10.1136/jnnp.55.3.181
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).
pubmed: 33568819
pmcid: 7875770
doi: 10.1038/s41586-021-03205-y
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Project MinE ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur. J. Hum. Genet. 26, 1537–1546 (2018).
doi: 10.1038/s41431-018-0177-4
Tryka, K. A. et al. NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 42, D975–D979 (2014).
pubmed: 24297256
doi: 10.1093/nar/gkt1211
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Regier, A. A. et al. Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects. Nat. Commun. 9, 4038 (2018).
pubmed: 30279509
pmcid: 6168605
doi: 10.1038/s41467-018-06159-4
realignment. GitHub https://github.com/maarten-k/realignment (2023).
Kooyman, M. maarten-k/realignment: pipeline for exome and WGS(DF3) pipeline. Zenodo https://doi.org/10.5281/zenodo.10963076 (2024).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).
pubmed: 25416802
pmcid: 4267638
doi: 10.1093/nar/gku1206
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
pubmed: 29155950
doi: 10.1093/nar/gkx1098
Wang, C., Zhan, X., Liang, L., Abecasis, G. R. & Lin, X. Improved ancestry estimation for both genotyping and sequencing data using projection procrustes analysis and genotype imputation. Am. J. Hum. Genet. 96, 926–937 (2015).
pubmed: 26027497
pmcid: 4457959
doi: 10.1016/j.ajhg.2015.04.018
Anderson, C. A. et al. Data quality control in genetic case–control association studies. Nat. Protoc. 5, 1564–1573 (2010).
pubmed: 21085122
pmcid: 3025522
doi: 10.1038/nprot.2010.116
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Galinsky, K. J. et al. Fast principal component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456–472 (2016).
pubmed: 26924531
pmcid: 4827102
doi: 10.1016/j.ajhg.2015.12.022
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
pubmed: 34478634
pmcid: 8551421
doi: 10.1016/j.ajhg.2021.08.005
Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).
pubmed: 21737059
pmcid: 3135811
doi: 10.1016/j.ajhg.2011.05.029
Hop, P. J. & Kenna, K. P. RVAT: rare variant association toolkit. GitHub https://github.com/kennalab/rvat (2024).
Nickerson, D. A., Tobe, V. O. & Taylor, S. L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751 (1997).
pubmed: 9207020
pmcid: 146817
doi: 10.1093/nar/25.14.2745
Singh, G., Ricci, E. P. & Moore, M. J. RIPiT-seq: a high-throughput approach for footprinting RNA:protein complexes. Methods 65, 320–332 (2014).
pubmed: 24096052
doi: 10.1016/j.ymeth.2013.09.013
Baron, D. M. et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 39, 110598 (2022).
pubmed: 35385738
pmcid: 9134378
doi: 10.1016/j.celrep.2022.110598
KennaLab/rvat: v.2.09. Zenodo https://doi.org/10.5281/zenodo.10973472 (2024).