Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
10 Jun 2024
Historique:
received: 06 12 2023
accepted: 06 05 2024
medline: 11 6 2024
pubmed: 11 6 2024
entrez: 10 6 2024
Statut: aheadofprint

Résumé

Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified

Identifiants

pubmed: 38858457
doi: 10.1038/s41588-024-01787-7
pii: 10.1038/s41588-024-01787-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).
pubmed: 31521533 doi: 10.1016/S1474-4422(19)30287-X
Rehm, H. L. et al. ClinGen—the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).
pubmed: 26014595 pmcid: 4474187 doi: 10.1056/NEJMsr1406261
Waschbüsch, D. et al. LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS ONE 9, e111632 (2014).
pubmed: 25360523 pmcid: 4216093 doi: 10.1371/journal.pone.0111632
McGrath, E., Waschbüsch, D., Baker, B. M. & Khan, A. R. LRRK2 binds to the Rab32 subfamily in a GTP-dependent manner via its armadillo domain. Small GTPases 12, 133–146 (2021).
pubmed: 31552791 doi: 10.1080/21541248.2019.1666623
Berwick, D. C., Heaton, G. R., Azeggagh, S. & Harvey, K. LRRK2 biology from structure to dysfunction: research progresses, but the themes remain the same. Mol. Neurodegener. 14, 49 (2019).
pubmed: 31864390 pmcid: 6925518 doi: 10.1186/s13024-019-0344-2
Tolosa, E., Vila, M., Klein, C. & Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020).
pubmed: 31980808 doi: 10.1038/s41582-019-0301-2
Taymans, J.-M. et al. Perspective on the current state of the LRRK2 field. NPJ Park. Dis. 9, 104 (2023).
doi: 10.1038/s41531-023-00544-7
Shino, M. Y. et al. Familial aggregation of Parkinson’s disease in a multiethnic community-based case-control study. Mov. Disord. 25, 2587–2594 (2010).
pubmed: 20842689 pmcid: 2978761 doi: 10.1002/mds.23361
Farlow, J. L. et al. Whole-exome sequencing in familial Parkinson disease. JAMA Neurol. 73, 68 (2016).
pubmed: 26595808 pmcid: 4946647 doi: 10.1001/jamaneurol.2015.3266
Hernandez, D. G., Reed, X. & Singleton, A. B. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem. 139, 59–74 (2016).
pubmed: 27090875 pmcid: 5155439 doi: 10.1111/jnc.13593
Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 91, 795–808 (2020).
pubmed: 32576618 doi: 10.1136/jnnp-2019-322338
Bandres-Ciga, S., Diez-Fairen, M., Kim, J. J. & Singleton, A. B. Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782 (2020).
pubmed: 31991247 pmcid: 7064061 doi: 10.1016/j.nbd.2020.104782
Parkinson’s disease gene curation expert panel. ClinGen https://clinicalgenome.org/affiliation/40079/ (2024).
Povysil, G. et al. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat. Rev. Genet. 20, 747–759 (2019).
pubmed: 31605095 doi: 10.1038/s41576-019-0177-4
Makarious, M. B. et al. Large-scale rare variant burden testing in Parkinson’s disease. Brain 146, 4622–4632 (2023).
pubmed: 37348876 pmcid: 10629770 doi: 10.1093/brain/awad214
Smith, B. N. et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84, 324–331 (2014).
pubmed: 25374358 pmcid: 4521390 doi: 10.1016/j.neuron.2014.09.027
Kenna, K. P. et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042 (2016).
pubmed: 27455347 pmcid: 5560030 doi: 10.1038/ng.3626
Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283 (2018).
pmcid: 5867896 doi: 10.1016/j.neuron.2018.02.027
Van der Auwera, G. D. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, Inc., 2020).
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).
doi: 10.1093/biomet/80.1.27
Zhao, Z. et al. UK Biobank whole-exome sequence binary phenome analysis with robust region-based rare-variant test. Am. J. Hum. Genet. 106, 3–12 (2020).
pubmed: 31866045 doi: 10.1016/j.ajhg.2019.11.012
Liu, Y. et al. ACAT: a fast and powerful P value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410–421 (2019).
pubmed: 30849328 pmcid: 6407498 doi: 10.1016/j.ajhg.2019.01.002
Genome Aggregation Database Consortium et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7
Lara Ordóñez, A. J., Fasiczka, R., Naaldijk, Y. & Hilfiker, S. Rab GTPases in Parkinson’s disease: a primer. Essays Biochem. 65, 961–974 (2021).
pubmed: 34414419 pmcid: 8709891 doi: 10.1042/EBC20210016
Steger, M. et al. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. eLife 6, e31012 (2017).
pubmed: 29125462 pmcid: 5695910 doi: 10.7554/eLife.31012
Purlyte, E. et al. Rab29 activation of the Parkinson’s disease-associated LRRK2 kinase. EMBO J. 37, 1–18 (2018).
pubmed: 29212815 doi: 10.15252/embj.201798099
Di Maio, R. et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 10, eaar5429 (2018).
pubmed: 30045977 pmcid: 6344941 doi: 10.1126/scitranslmed.aar5429
Kalogeropulou, A. F. et al. Impact of 100 LRRK2 variants linked to Parkinson’s disease on kinase activity and microtubule binding. Biochem. J. 479, 1759–1783 (2022).
pubmed: 35950872 doi: 10.1042/BCJ20220161
Sheng, Z. et al. Ser
pubmed: 23241745 doi: 10.1126/scitranslmed.3004485
Fraser, K. B. et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov. Disord. 31, 1543–1550 (2016).
pubmed: 27297049 pmcid: 5053851 doi: 10.1002/mds.26686
Zhou, H. et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 12, 260–271 (2013).
pubmed: 23186163 doi: 10.1021/pr300630k
Zhu, H. et al. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 382, 1404–1411 (2023).
pubmed: 38127736 pmcid: 10786121 doi: 10.1126/science.adi9926
Gustavsson, E. K. et al. RAB32 Ser71Arg in autosomal dominant Parkinson’s disease: linkage, association, and functional analyses. Lancet Neurol. 23, 603–614 (2024).
Khan, A. R., Kecman, T. PDB entry - 6FF8. Crystal structure of uncomplexed Rab32 in the active GTP-bound state at 2.13 angstrom resolution. Protein Data Bank https://doi.org/10.2210/pdb6ff8/pdb (2024).
Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).
pubmed: 1564476 pmcid: 1014720 doi: 10.1136/jnnp.55.3.181
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).
pubmed: 33568819 pmcid: 7875770 doi: 10.1038/s41586-021-03205-y
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Project MinE ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur. J. Hum. Genet. 26, 1537–1546 (2018).
doi: 10.1038/s41431-018-0177-4
Tryka, K. A. et al. NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 42, D975–D979 (2014).
pubmed: 24297256 doi: 10.1093/nar/gkt1211
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Regier, A. A. et al. Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects. Nat. Commun. 9, 4038 (2018).
pubmed: 30279509 pmcid: 6168605 doi: 10.1038/s41467-018-06159-4
realignment. GitHub https://github.com/maarten-k/realignment (2023).
Kooyman, M. maarten-k/realignment: pipeline for exome and WGS(DF3) pipeline. Zenodo https://doi.org/10.5281/zenodo.10963076 (2024).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).
pubmed: 25416802 pmcid: 4267638 doi: 10.1093/nar/gku1206
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
pubmed: 29155950 doi: 10.1093/nar/gkx1098
Wang, C., Zhan, X., Liang, L., Abecasis, G. R. & Lin, X. Improved ancestry estimation for both genotyping and sequencing data using projection procrustes analysis and genotype imputation. Am. J. Hum. Genet. 96, 926–937 (2015).
pubmed: 26027497 pmcid: 4457959 doi: 10.1016/j.ajhg.2015.04.018
Anderson, C. A. et al. Data quality control in genetic case–control association studies. Nat. Protoc. 5, 1564–1573 (2010).
pubmed: 21085122 pmcid: 3025522 doi: 10.1038/nprot.2010.116
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Galinsky, K. J. et al. Fast principal component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456–472 (2016).
pubmed: 26924531 pmcid: 4827102 doi: 10.1016/j.ajhg.2015.12.022
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
pubmed: 34478634 pmcid: 8551421 doi: 10.1016/j.ajhg.2021.08.005
Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).
pubmed: 21737059 pmcid: 3135811 doi: 10.1016/j.ajhg.2011.05.029
Hop, P. J. & Kenna, K. P. RVAT: rare variant association toolkit. GitHub https://github.com/kennalab/rvat (2024).
Nickerson, D. A., Tobe, V. O. & Taylor, S. L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751 (1997).
pubmed: 9207020 pmcid: 146817 doi: 10.1093/nar/25.14.2745
Singh, G., Ricci, E. P. & Moore, M. J. RIPiT-seq: a high-throughput approach for footprinting RNA:protein complexes. Methods 65, 320–332 (2014).
pubmed: 24096052 doi: 10.1016/j.ymeth.2013.09.013
Baron, D. M. et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 39, 110598 (2022).
pubmed: 35385738 pmcid: 9134378 doi: 10.1016/j.celrep.2022.110598
KennaLab/rvat: v.2.09. Zenodo https://doi.org/10.5281/zenodo.10973472 (2024).

Auteurs

Paul J Hop (PJ)

Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.

Dongbing Lai (D)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Pamela J Keagle (PJ)

Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.

Desiree M Baron (DM)

Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.

Brendan J Kenna (BJ)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.

Maarten Kooyman (M)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.

Cheryl Halter (C)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Letizia Straniero (L)

Department of Biomedical Sciences, Humanitas University, Milan, Italy.
IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Rosanna Asselta (R)

Department of Biomedical Sciences, Humanitas University, Milan, Italy.
IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Salvatore Bonvegna (S)

Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy.

Alexandra I Soto-Beasley (AI)

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.

Zbigniew K Wszolek (ZK)

Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.

Ryan J Uitti (RJ)

Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.

Ioannis Ugo Isaias (IU)

Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy.
Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany.

Gianni Pezzoli (G)

Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy.
Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.

Nicola Ticozzi (N)

Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.
Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy.

Owen A Ross (OA)

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA.

Jan H Veldink (JH)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.

Tatiana M Foroud (TM)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Kevin P Kenna (KP)

Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.

John E Landers (JE)

Department of Neurology, UMass Chan Medical School, Worcester, MA, USA. john.landers@umassmed.edu.

Classifications MeSH