A deep learning model for generating [
Amyloid
Deep learning
Metabolism
Neuroimaging
PET
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
01
02
2024
accepted:
05
05
2024
medline:
11
6
2024
pubmed:
11
6
2024
entrez:
11
6
2024
Statut:
aheadofprint
Résumé
Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ We proposed a DL model for generating the [
Identifiants
pubmed: 38861183
doi: 10.1007/s00259-024-06755-1
pii: 10.1007/s00259-024-06755-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : SNSF 320030_176052
Informations de copyright
© 2024. The Author(s).
Références
Pemberton HG, et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging. 2022;49(10):3508–28. https://doi.org/10.1007/s00259-022-05784-y .
doi: 10.1007/s00259-022-05784-y
pubmed: 35389071
pmcid: 9308604
Clark CM, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83. https://doi.org/10.1001/jama.2010.2008 .
doi: 10.1001/jama.2010.2008
pubmed: 21245183
pmcid: 7041965
Rabinovici GD, et al. "Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133(Pt 2):512–28. https://doi.org/10.1093/brain/awp326 .
doi: 10.1093/brain/awp326
pubmed: 20080878
pmcid: 2858015
Chetelat G, et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19(11):951–62. https://doi.org/10.1016/S1474-4422(20)30314-8 .
doi: 10.1016/S1474-4422(20)30314-8
pubmed: 33098804
Garibotto V, Morbelli S, Pagani M. Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging. 2016;43(7):1300–3. https://doi.org/10.1007/s00259-016-3393-6 .
doi: 10.1007/s00259-016-3393-6
Boccalini C, et al. Early-phase (18)F-Florbetapir and (18)F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med. 2022;64(2):266–73. https://doi.org/10.2967/jnumed.122.264256 .
doi: 10.2967/jnumed.122.264256
pubmed: 35863896
Ottoy J, et al. (18)F-FDG PET, the early phases and the delivery rate of (18)F-AV45 PET as proxies of cerebral blood flow in Alzheimer’s disease: Validation against (15)O-H(2)O PET. Alzheimers Dement. 2019;15(9):1172–82. https://doi.org/10.1016/j.jalz.2019.05.010 .
doi: 10.1016/j.jalz.2019.05.010
pubmed: 31405824
Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011;52(2):173–9. https://doi.org/10.2967/jnumed.110.082057 .
doi: 10.2967/jnumed.110.082057
pubmed: 21233181
Boehringer AS, Sanaat A, Arabi H, Zaidi H. An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images. Insights Into Imaging. 2023;14(1):141. https://doi.org/10.1186/s13244-023-01487-6 .
doi: 10.1186/s13244-023-01487-6
pubmed: 37620554
pmcid: 10449747
Sanaat A, Akhavanalaf A, Shiri I, Salimi Y, Arabi H, Zaidi H. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum Brain Mapp. 2022;43(16):5032–43. https://doi.org/10.1002/hbm.26068 .
doi: 10.1002/hbm.26068
pubmed: 36087092
pmcid: 9582376
Kaviani S, Sanaat A, Mokri M, Cohalan C, Carrier J-F. Image reconstruction using UNET-transformer network for fast and low-dose PET scans. Comput Med Imag Graph. 2023;110:102315. https://doi.org/10.1016/j.compmedimag.2023.102315 .
doi: 10.1016/j.compmedimag.2023.102315
Zaidi H, El Naqa I. Quantitative molecular positron emission tomography imaging using advanced deep learning techniques. Annu Rev Biomed Eng. 2021;23:249–76. https://doi.org/10.1146/annurev-bioeng-082420-020343 .
doi: 10.1146/annurev-bioeng-082420-020343
pubmed: 33797938
Sanaat A, Shiri I, Ferdowsi S, Arabi H, Zaidi H. Robust-deep: A method for increasing brain imaging datasets to improve deep learning models’ performance and robustness. J Digit Imaging. 2022;35(3):469–81. https://doi.org/10.1007/s10278-021-00536-0 .
doi: 10.1007/s10278-021-00536-0
pubmed: 35137305
pmcid: 9156620
Choi H, Lee DS. Generation of structural MR images from amyloid PET: Application to MR-less quantification. J Nucl Med. 2018;59(7):1111–7. https://doi.org/10.2967/jnumed.117.199414 .
doi: 10.2967/jnumed.117.199414
pubmed: 29217736
pmcid: 6910644
Wang R, et al. Generation of synthetic PET images of synaptic density and amyloid from (18) F-FDG images using deep learning. Med Phys. 2021;48(9):5115–29. https://doi.org/10.1002/mp.15073 .
doi: 10.1002/mp.15073
pubmed: 34224153
Perani D, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin. 2014;6:445–54. https://doi.org/10.1016/j.nicl.2014.10.009 .
doi: 10.1016/j.nicl.2014.10.009
pubmed: 25389519
pmcid: 4225527
Guedj E, et al. EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3. Eur J Nucl Med Mol Imaging. 2022;49(2):632–51. https://doi.org/10.1007/s00259-021-05603-w .
doi: 10.1007/s00259-021-05603-w
pubmed: 34882261
Schmitt J, et al. Dual-Phase β-Amyloid PET captures neuronal injury and amyloidosis in corticobasal syndrome. Front Aging Neurosci. 2021;13:661284. https://doi.org/10.3389/fnagi.2021.661284 .
doi: 10.3389/fnagi.2021.661284
pubmed: 34054506
pmcid: 8155727
Hsiao IT, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012;39(4):613–20. https://doi.org/10.1007/s00259-011-2051-2 .
doi: 10.1007/s00259-011-2051-2
pubmed: 22270508
Dodich A, et al. The A/T/N model applied through imaging biomarkers in a memory clinic. Eur J Nucl Med Mol Imaging. 2020;47(2):247–55. https://doi.org/10.1007/s00259-019-04536-9 .
doi: 10.1007/s00259-019-04536-9
pubmed: 31792573
Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020;206:116189. https://doi.org/10.1016/j.neuroimage.2019.116189 .
doi: 10.1016/j.neuroimage.2019.116189
pubmed: 31521825
Cao H et al. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537, 2021.
Liu Z et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
Dosovitskiy A et al., An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015 .
doi: 10.1016/j.neuroimage.2011.09.015
pubmed: 21979382
ICRP. ICRP Publication 128. Radiation dose to patients from radiopharmaceuticals: A compendium of current information related to frequently used substances, Ann ICRP, 2015;44(S2):1–321. https://doi.org/10.1177/0146645314558019 .
Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging. 2016;43(2):362–73. https://doi.org/10.1007/s00259-015-3208-1 .
doi: 10.1007/s00259-015-3208-1
pubmed: 26440450
Joshi AD, et al. Radiation dosimetry of florbetapir F 18. EJNMMI Res. 2014;4(1):4. https://doi.org/10.1186/2191-219x-4-4 .
doi: 10.1186/2191-219x-4-4
pubmed: 24401181
pmcid: 4061749
Sanaat A, Mirsadeghi E, Razeghi B, Ginovart N, Zaidi H. Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation. Med Phys. 2021;48(9):5059–71. https://doi.org/10.1002/mp.15063 .
doi: 10.1002/mp.15063
pubmed: 34174787
Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48(8):2405–15. https://doi.org/10.1007/s00259-020-05167-1 .
doi: 10.1007/s00259-020-05167-1
pubmed: 33495927
pmcid: 8241799
Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med. 2020;61(9):1388–96. https://doi.org/10.2967/jnumed.119.239327 .
doi: 10.2967/jnumed.119.239327
pubmed: 31924718
pmcid: 7456177
Son SH, et al. Early-Phase 18F-Florbetaben PET as an alternative modality for 18F-FDG PET. Clin Nucl Med. 2020;45(1):e8–14. https://doi.org/10.1097/rlu.0000000000002768 .
doi: 10.1097/rlu.0000000000002768
pubmed: 31524679
Gjedde A, Aanerud J, Braendgaard H, Rodell AB. Blood-brain transfer of Pittsburgh compound B in humans. Front Aging Neurosci. 2013;5:70. https://doi.org/10.3389/fnagi.2013.00070 .
doi: 10.3389/fnagi.2013.00070
pubmed: 24223554
pmcid: 3819578
Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607.
pubmed: 15073255
Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage. 1995;2(2):148–56. https://doi.org/10.1006/nimg.1995.1017 .
doi: 10.1006/nimg.1995.1017
pubmed: 9343597