A deep learning model for generating [

Amyloid Deep learning Metabolism Neuroimaging PET

Journal

European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 01 02 2024
accepted: 05 05 2024
medline: 11 6 2024
pubmed: 11 6 2024
entrez: 11 6 2024
Statut: aheadofprint

Résumé

Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([ A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([ The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [ We proposed a DL model for generating the [

Identifiants

pubmed: 38861183
doi: 10.1007/s00259-024-06755-1
pii: 10.1007/s00259-024-06755-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : SNSF 320030_176052

Informations de copyright

© 2024. The Author(s).

Références

Pemberton HG, et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging. 2022;49(10):3508–28. https://doi.org/10.1007/s00259-022-05784-y .
doi: 10.1007/s00259-022-05784-y pubmed: 35389071 pmcid: 9308604
Clark CM, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83. https://doi.org/10.1001/jama.2010.2008 .
doi: 10.1001/jama.2010.2008 pubmed: 21245183 pmcid: 7041965
Rabinovici GD, et al. "Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010;133(Pt 2):512–28. https://doi.org/10.1093/brain/awp326 .
doi: 10.1093/brain/awp326 pubmed: 20080878 pmcid: 2858015
Chetelat G, et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19(11):951–62. https://doi.org/10.1016/S1474-4422(20)30314-8 .
doi: 10.1016/S1474-4422(20)30314-8 pubmed: 33098804
Garibotto V, Morbelli S, Pagani M. Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging. 2016;43(7):1300–3. https://doi.org/10.1007/s00259-016-3393-6 .
doi: 10.1007/s00259-016-3393-6
Boccalini C, et al. Early-phase (18)F-Florbetapir and (18)F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med. 2022;64(2):266–73. https://doi.org/10.2967/jnumed.122.264256 .
doi: 10.2967/jnumed.122.264256 pubmed: 35863896
Ottoy J, et al. (18)F-FDG PET, the early phases and the delivery rate of (18)F-AV45 PET as proxies of cerebral blood flow in Alzheimer’s disease: Validation against (15)O-H(2)O PET. Alzheimers Dement. 2019;15(9):1172–82. https://doi.org/10.1016/j.jalz.2019.05.010 .
doi: 10.1016/j.jalz.2019.05.010 pubmed: 31405824
Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011;52(2):173–9. https://doi.org/10.2967/jnumed.110.082057 .
doi: 10.2967/jnumed.110.082057 pubmed: 21233181
Boehringer AS, Sanaat A, Arabi H, Zaidi H. An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images. Insights Into Imaging. 2023;14(1):141. https://doi.org/10.1186/s13244-023-01487-6 .
doi: 10.1186/s13244-023-01487-6 pubmed: 37620554 pmcid: 10449747
Sanaat A, Akhavanalaf A, Shiri I, Salimi Y, Arabi H, Zaidi H. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum Brain Mapp. 2022;43(16):5032–43. https://doi.org/10.1002/hbm.26068 .
doi: 10.1002/hbm.26068 pubmed: 36087092 pmcid: 9582376
Kaviani S, Sanaat A, Mokri M, Cohalan C, Carrier J-F. Image reconstruction using UNET-transformer network for fast and low-dose PET scans. Comput Med Imag Graph. 2023;110:102315. https://doi.org/10.1016/j.compmedimag.2023.102315 .
doi: 10.1016/j.compmedimag.2023.102315
Zaidi H, El Naqa I. Quantitative molecular positron emission tomography imaging using advanced deep learning techniques. Annu Rev Biomed Eng. 2021;23:249–76. https://doi.org/10.1146/annurev-bioeng-082420-020343 .
doi: 10.1146/annurev-bioeng-082420-020343 pubmed: 33797938
Sanaat A, Shiri I, Ferdowsi S, Arabi H, Zaidi H. Robust-deep: A method for increasing brain imaging datasets to improve deep learning models’ performance and robustness. J Digit Imaging. 2022;35(3):469–81. https://doi.org/10.1007/s10278-021-00536-0 .
doi: 10.1007/s10278-021-00536-0 pubmed: 35137305 pmcid: 9156620
Choi H, Lee DS. Generation of structural MR images from amyloid PET: Application to MR-less quantification. J Nucl Med. 2018;59(7):1111–7. https://doi.org/10.2967/jnumed.117.199414 .
doi: 10.2967/jnumed.117.199414 pubmed: 29217736 pmcid: 6910644
Wang R, et al. Generation of synthetic PET images of synaptic density and amyloid from (18) F-FDG images using deep learning. Med Phys. 2021;48(9):5115–29. https://doi.org/10.1002/mp.15073 .
doi: 10.1002/mp.15073 pubmed: 34224153
Perani D, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin. 2014;6:445–54. https://doi.org/10.1016/j.nicl.2014.10.009 .
doi: 10.1016/j.nicl.2014.10.009 pubmed: 25389519 pmcid: 4225527
Guedj E, et al. EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3. Eur J Nucl Med Mol Imaging. 2022;49(2):632–51. https://doi.org/10.1007/s00259-021-05603-w .
doi: 10.1007/s00259-021-05603-w pubmed: 34882261
Schmitt J, et al. Dual-Phase β-Amyloid PET captures neuronal injury and amyloidosis in corticobasal syndrome. Front Aging Neurosci. 2021;13:661284. https://doi.org/10.3389/fnagi.2021.661284 .
doi: 10.3389/fnagi.2021.661284 pubmed: 34054506 pmcid: 8155727
Hsiao IT, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012;39(4):613–20. https://doi.org/10.1007/s00259-011-2051-2 .
doi: 10.1007/s00259-011-2051-2 pubmed: 22270508
Dodich A, et al. The A/T/N model applied through imaging biomarkers in a memory clinic. Eur J Nucl Med Mol Imaging. 2020;47(2):247–55. https://doi.org/10.1007/s00259-019-04536-9 .
doi: 10.1007/s00259-019-04536-9 pubmed: 31792573
Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020;206:116189. https://doi.org/10.1016/j.neuroimage.2019.116189 .
doi: 10.1016/j.neuroimage.2019.116189 pubmed: 31521825
Cao H et al. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537, 2021.
Liu Z et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
Dosovitskiy A et al., An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015 .
doi: 10.1016/j.neuroimage.2011.09.015 pubmed: 21979382
ICRP. ICRP Publication 128. Radiation dose to patients from radiopharmaceuticals: A compendium of current information related to frequently used substances, Ann ICRP, 2015;44(S2):1–321. https://doi.org/10.1177/0146645314558019 .
Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging. 2016;43(2):362–73. https://doi.org/10.1007/s00259-015-3208-1 .
doi: 10.1007/s00259-015-3208-1 pubmed: 26440450
Joshi AD, et al. Radiation dosimetry of florbetapir F 18. EJNMMI Res. 2014;4(1):4. https://doi.org/10.1186/2191-219x-4-4 .
doi: 10.1186/2191-219x-4-4 pubmed: 24401181 pmcid: 4061749
Sanaat A, Mirsadeghi E, Razeghi B, Ginovart N, Zaidi H. Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation. Med Phys. 2021;48(9):5059–71. https://doi.org/10.1002/mp.15063 .
doi: 10.1002/mp.15063 pubmed: 34174787
Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48(8):2405–15. https://doi.org/10.1007/s00259-020-05167-1 .
doi: 10.1007/s00259-020-05167-1 pubmed: 33495927 pmcid: 8241799
Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med. 2020;61(9):1388–96. https://doi.org/10.2967/jnumed.119.239327 .
doi: 10.2967/jnumed.119.239327 pubmed: 31924718 pmcid: 7456177
Son SH, et al. Early-Phase 18F-Florbetaben PET as an alternative modality for 18F-FDG PET. Clin Nucl Med. 2020;45(1):e8–14. https://doi.org/10.1097/rlu.0000000000002768 .
doi: 10.1097/rlu.0000000000002768 pubmed: 31524679
Gjedde A, Aanerud J, Braendgaard H, Rodell AB. Blood-brain transfer of Pittsburgh compound B in humans. Front Aging Neurosci. 2013;5:70. https://doi.org/10.3389/fnagi.2013.00070 .
doi: 10.3389/fnagi.2013.00070 pubmed: 24223554 pmcid: 3819578
Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607.
pubmed: 15073255
Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage. 1995;2(2):148–56. https://doi.org/10.1006/nimg.1995.1017 .
doi: 10.1006/nimg.1995.1017 pubmed: 9343597

Auteurs

Amirhossein Sanaat (A)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland. Amirhossein.sanaat@unige.ch.

Cecilia Boccalini (C)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland. cecilia.boccalini@unige.ch.
Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland. cecilia.boccalini@unige.ch.

Gregory Mathoux (G)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

Daniela Perani (D)

Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Milan, Italy.

Giovanni B Frisoni (GB)

Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.

Sven Haller (S)

CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland.
Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Marie-Louise Montandon (ML)

Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.

Cristelle Rodriguez (C)

Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland.

Panteleimon Giannakopoulos (P)

Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland.
Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Valentina Garibotto (V)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
CIBM Center for Biomedical Imaging, Geneva, Switzerland.

Habib Zaidi (H)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland. habib.zaidi@hcuge.ch.
Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, Netherlands. habib.zaidi@hcuge.ch.
Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark. habib.zaidi@hcuge.ch.
University Research and Innovation Center, Óbudabuda University, Budapest, Hungary. habib.zaidi@hcuge.ch.

Classifications MeSH