Uniform large-area surface patterning achieved by metal dewetting for the top-down fabrication of GaN nanowire ensembles.
compound semiconductor
nano-patterning
nanostructure
self-assembly
Journal
Nanotechnology
ISSN: 1361-6528
Titre abrégé: Nanotechnology
Pays: England
ID NLM: 101241272
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
aheadofprint
Résumé
The dewetting of thin Pt films on different surfaces is investigated as a means to provide the patterning for the top-down fabrication of GaN nanowire ensembles. The transformation from a thin film to an ensemble of nanoislands upon annealing proceeds in good agreement with the void growth model. With increasing annealing duration, the size and shape uniformity of the nanoislands improves. This improvement speeds up for higher annealing temperature. After an optimum annealing duration, the size uniformity deteriorates due to the coalescence of neighboring islands. By changing the Pt film thickness, the nanoisland diameter and density can be quantitatively controlled in a way predicted by a simple thermodynamic model. We demonstrate the uniformity of the nanoisland ensembles for an area larger than 1 cm². GaN nanowires are fabricated by a sequence of dry and wet etching steps, and these nanowires inherit the diameters and density of the Pt nanoisland ensemble used as a mask. Our study achieves advancements in size uniformity and range of obtainable diameters compared to previous works. This simple, economical, and scalable approach to the top-down fabrication of nanowires is useful for applications requiring large and uniform nanowire ensembles with controllable dimensions.
Identifiants
pubmed: 38861940
doi: 10.1088/1361-6528/ad5682
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Creative Commons Attribution license.