The lncRNAMALAT1-WTAP axis: a novel layer of EMT regulation in hypoxic triple-negative breast cancer.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
22
02
2024
accepted:
04
06
2024
revised:
30
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Early metastatic disease development is one characteristic that defines triple-negative breast cancer (TNBC) as the most aggressive breast cancer (BC) subtype. Numerous studies have identified long non-coding RNAs (lncRNA) as critical players in regulating tumor progression and metastasis formation. Here, we show that MALAT1, a long non-coding RNA known to promote various features of BC malignancy, such as migration and neo angiogenesis, regulates TNBC cell response to hypoxia. By profiling MALAT1-associated transcripts, we discovered that lncRNA MALAT1 interacts with the mRNA encoding WTAP protein, previously reported as a component of the N6-methyladenosine (m6A) modification writer complex. In hypoxic conditions, MALAT1 positively regulates WTAP protein expression, which influences the response to hypoxia by favoring the transcription of the master regulators HIF1α and HIF1β. Furthermore, WTAP stimulates BC cell migratory ability and the expression of N-Cadherin and Vimentin, hallmarks of epithelial-to-mesenchymal transition (EMT). In conclusion, this study highlights the functional axis comprising MALAT1 and WTAP as a novel prognostic marker of TNBC progression and as a potential target for the development of therapeutic approaches for TNBC treatment.
Identifiants
pubmed: 38862471
doi: 10.1038/s41420-024-02058-4
pii: 10.1038/s41420-024-02058-4
doi:
Types de publication
Journal Article
Langues
eng
Pagination
276Informations de copyright
© 2024. The Author(s).
Références
Radosevic-Robin N, Selenica P, Zhu Y, Won HH, Berger MF, Ferrando L, et al. Recurrence biomarkers of triple negative breast cancer treated with neoadjuvant chemotherapy and anti-EGFR antibodies. Npj Breast Cancer. 2021;7:124.
doi: 10.1038/s41523-021-00334-5
pubmed: 34535679
pmcid: 8448841
Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol. 2018;29:895–902.
doi: 10.1093/annonc/mdy024
pubmed: 29365031
pmcid: 5913636
Knowles HJ, Harris AL. Hypoxia and oxidative stress in breast cancer Hypoxia and tumourigenesis. Breast Cancer Res. 2001;3:318.
doi: 10.1186/bcr314
pubmed: 11597321
pmcid: 138695
Tam SY, Wu VWC, Law HKW. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front Oncol. 2020;10:486.
doi: 10.3389/fonc.2020.00486
pubmed: 32322559
pmcid: 7156534
Hajibabaei S, Nafissi N, Azimi Y, Mahdian R, Rahimi-Jamnani F, Valizadeh V, et al. Targeting long non-coding RNA MALAT1 reverses cancerous phenotypes of breast cancer cells through microRNA-561-3p/TOP2A axis. Sci Rep. 2023;13:8652.
doi: 10.1038/s41598-023-35639-x
pubmed: 37244966
pmcid: 10224942
Meseure D, Vacher S, Lallemand F, Alsibai KD, Hatem R, Chemlali W, et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br J Cancer. 2016;114:1395–404.
doi: 10.1038/bjc.2016.123
pubmed: 27172249
pmcid: 4984455
Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63.
doi: 10.1186/s13045-018-0606-4
pubmed: 29739426
pmcid: 5941496
Wang X, Liu C, Zhang S, Yan H, Zhang L, Jiang A, et al. N6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell. 2021;56:702–15.e8.
doi: 10.1016/j.devcel.2021.01.015
pubmed: 33609462
Pruszko M, Milano E, Forcato M, Donzelli S, Ganci F, Di Agostino S, et al. The mutant p53‐ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Rep. 2017;18:1331–51.
doi: 10.15252/embr.201643370
pubmed: 28652379
pmcid: 5538427
Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, et al. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol. 2022;5:598.
doi: 10.1038/s42003-022-03539-x
pubmed: 35710947
pmcid: 9203778
Zheng HX, Zhang XS, Sui N. Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnol Adv. 2020;45:107656.
doi: 10.1016/j.biotechadv.2020.107656
pubmed: 33181242
An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21:14.
doi: 10.1186/s12943-022-01500-4
pubmed: 35022030
pmcid: 8753874
Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum Mol Genet. 2000;9:2231–9.
doi: 10.1093/oxfordjournals.hmg.a018914
pubmed: 11001926
Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, et al. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288:33292–302.
doi: 10.1074/jbc.M113.500397
pubmed: 24100041
pmcid: 3829175
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.
doi: 10.1038/nchembio.1432
pubmed: 24316715
Huang T, Cao L, Feng N, Xu B, Dong Y, Wang M. N 6 -methyladenosine (m 6 A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered. 2021;12:10935–44.
doi: 10.1080/21655979.2021.2000198
pubmed: 34866525
pmcid: 8809972
Ou B, Liu Y, Yang X, Xu X, Yan Y, Zhang J. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis. 2021;12:737.
doi: 10.1038/s41419-021-04028-5
pubmed: 34312368
pmcid: 8313695
Zhou M, Dong M, Yang X, Gong J, Liao X, Zhang Q, et al. The emerging roles and mechanism of m6a in breast cancer progression. Front Genet. 2022;13:983564.
doi: 10.3389/fgene.2022.983564
pubmed: 36035182
pmcid: 9399344
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18:127.
doi: 10.1186/s12943-019-1053-8
pubmed: 31438961
pmcid: 6704583
He L, Chen S, Ying Y, Xie H, Li J, Ma X, et al. MicroRNA‐501‐3p inhibits the proliferation of kidney cancer cells by targeting WTAP. Cancer Med. 2021;10:7222–32.
doi: 10.1002/cam4.4157
pubmed: 34595849
pmcid: 8525086
Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, et al. Extensive regulation of the non‐coding transcriptome by hypoxia: role of HIF in releasing paused RNA pol2. EMBO Rep. 2014;15:70–6.
doi: 10.1002/embr.201337642
pubmed: 24363272
Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE, Hearn S, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30:34–51.
doi: 10.1101/gad.270959.115
pubmed: 26701265
pmcid: 4701977
Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res. 2019;79:2480–93.
doi: 10.1158/0008-5472.CAN-18-1432
pubmed: 30914432
Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80.
doi: 10.1126/science.aaf4405
pubmed: 27124451
pmcid: 4898055
Peng PH, Hsu KW, Chieh-Yu Lai J, Wu KJ. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J. 2021;44:521–33.
doi: 10.1016/j.bj.2021.03.005
pubmed: 34654684
pmcid: 8640553
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.
doi: 10.1186/s12943-019-1089-9
pubmed: 31711497
pmcid: 6844052
Liu W, Gao X, Chen X, Zhao N, Sun Y, Zou Y, et al. miR-139-5p loss-mediated WTAP activation contributes to hepatocellular carcinoma progression by promoting the epithelial to mesenchymal transition. Front Oncol. 2021;11:611544.
doi: 10.3389/fonc.2021.611544
pubmed: 33937023
pmcid: 8083052
Cesaro B, Iaiza A, Piscopo F, Tarullo M, Cesari E, Rotili D, et al. Enhancing sensitivity of triple‐negative breast cancer to DNA‐damaging therapy through chemical inhibition of the m6A methyltransferase METTL3. Cancer Commun. 2023;cac2.12509.
Fan Y, Li X, Sun H, Gao Z, Zhu Z, Yuan K. Role of WTAP in cancer: from mechanisms to the therapeutic potential. Biomolecules. 2022;12:1224.
doi: 10.3390/biom12091224
pubmed: 36139062
pmcid: 9496264
Chu C, Quinn J, Chang HY. Chromatin isolation by RNA purification (ChIRP). J Vis Exp. 2012;26:3912.
Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8:176–89.
doi: 10.1038/nprot.2012.148
pubmed: 23288318
Molinie B, Giallourakis CC. Genome-wide location analyses of N6-methyladenosine modifications (m6A-Seq). In: Lusser A, curatore, editor. RNA methylation. New York, NY: Springer New York; 2017 [citato 28 settembre 2022]. p. 45–53. (Methods in Molecular Biology; vol. 1562). Disponibile su: https://doi.org/10.1007/978-1-4939-6807-7_4 .