Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 06 12 2022
accepted: 27 09 2023
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.

Identifiants

pubmed: 38862487
doi: 10.1038/s41467-023-42013-y
pii: 10.1038/s41467-023-42013-y
doi:

Substances chimiques

Quercetin 9IKM0I5T1E

Types de publication

Journal Article Twin Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

4795

Informations de copyright

© 2024. The Author(s).

Références

Martinez, E. M., Yoshida, M. C., Candelario, T. L. T. & Hughes-Fulford, M. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R480–R488 (2015).
pubmed: 25568077 pmcid: 4360066 doi: 10.1152/ajpregu.00449.2014
Tackett, N. et al. Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity. Sci. Rep. 9, 13825 (2019).
pubmed: 31554863 pmcid: 6761163 doi: 10.1038/s41598-019-50311-z
Crucian, B. et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 33, 456–465 (2013).
pubmed: 23100144 doi: 10.1007/s10875-012-9824-7
Paul, A. M. et al. Beyond low-earth orbit: characterizing immune and microrna differentials following simulated deep spaceflight conditions in mice. iScience 23, 101747 (2020).
pubmed: 33376970 pmcid: 7756144 doi: 10.1016/j.isci.2020.101747
Guéguinou, N. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J. Leukoc. Biol. 86, 1027–1038 (2009).
pubmed: 19690292 doi: 10.1189/jlb.0309167
Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407 (2019).
pubmed: 31681296 pmcid: 6797618 doi: 10.3389/fimmu.2019.02407
Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, 1437 (2018).
pubmed: 30018614 pmcid: 6038331 doi: 10.3389/fimmu.2018.01437
Chang, T. T. et al. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J. Leukoc. Biol. 92, 1133–1145 (2012).
pubmed: 22750545 pmcid: 3501893 doi: 10.1189/jlb.0312157
Hughes-Fulford, M., Chang, T. T., Martinez, E. M. & Li, C.-F. Spaceflight alters expression of microRNA during T-cell activation. FASEB J. 29, 4893–4900 (2015).
pubmed: 26276131 pmcid: 4653058 doi: 10.1096/fj.15-277392
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
pubmed: 33242417 pmcid: 7870178 doi: 10.1016/j.cell.2020.11.002
Bigley, A. B. et al. NK cell function is impaired during long-duration spaceflight. J. Appl. Physiol. 126, 842–853 (2019).
pubmed: 30382809 doi: 10.1152/japplphysiol.00761.2018
Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front. Microbiol. 10, 16 (2019).
pubmed: 30792698 pmcid: 6374706 doi: 10.3389/fmicb.2019.00016
Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1, 15013 (2015).
pubmed: 28725716 pmcid: 5515498 doi: 10.1038/npjmgrav.2015.13
Mehta, S. K. et al. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 3, 11 (2017).
pubmed: 28649633 pmcid: 5445581 doi: 10.1038/s41526-017-0015-y
Mehta, S. K. et al. Localization of VZV in saliva of zoster patients. J. Med. Virol. 89, 1686–1689 (2017).
pubmed: 28295404 doi: 10.1002/jmv.24807
Mehta, S. K. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61, 205–209 (2013).
pubmed: 23107825 doi: 10.1016/j.cyto.2012.09.019
Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
pubmed: 30975860 pmcid: 7580864 doi: 10.1126/science.aau8650
Spatz, J. M. et al. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci. Rep. 11, 11872 (2021).
pubmed: 34099760 pmcid: 8184772 doi: 10.1038/s41598-021-90458-2
Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).
pubmed: 35974148 doi: 10.1038/s41577-022-00761-w
Freed, L. E. & Vunjak-Novakovic, G. Spaceflight bioreactor studies of cells and tissues. Adv. Space Biol. Med. 8, 177–195 (2002).
pubmed: 12951697 doi: 10.1016/S1569-2574(02)08019-X
Nelson, E. S., Mulugeta, L. & Myers, J. G. Microgravity-induced fluid shift and ophthalmic changes. Life (Basel) 4, 621–665 (2014).
pubmed: 25387162
Barrila, J. et al. Spaceflight analogue culture enhances the host-pathogen interaction between salmonella and a 3-D biomimetic intestinal co-culture model. Front. Cell. Infect. Microbiol. 12, 705647 (2022).
pubmed: 35711662 pmcid: 9195300 doi: 10.3389/fcimb.2022.705647
Caron, G. et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J. Immunol. 175, 1551–1557 (2005).
pubmed: 16034093 doi: 10.4049/jimmunol.175.3.1551
Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).
pubmed: 34888528 pmcid: 8654267 doi: 10.1038/s43587-021-00082-y
Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).
pubmed: 35974106 pmcid: 9381717 doi: 10.1038/s41467-022-32552-1
Wu, F., Liu, Y.-Z. & Ling, B. MTD: a unique pipeline for host and meta-transcriptome joint and integrative analyses of RNA-seq data. Brief. Bioinformatics 23, bbac111 (2022).
pubmed: 35380623 doi: 10.1093/bib/bbac111
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).
pubmed: 31819264 doi: 10.1038/s41592-019-0667-5
Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).
pubmed: 31061481 pmcid: 6610714 doi: 10.1038/s41587-019-0114-2
Vorperian, S. K. & Moufarrej, M. N. Tabula Sapiens Consortium & Quake, S. R. Cell types of origin of the cell-free transcriptome. Nat. Biotechnol. 40, 855–861 (2022).
pubmed: 35132263 pmcid: 9200634 doi: 10.1038/s41587-021-01188-9
Nataraj, N. B. et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 38, 110418 (2022).
pubmed: 35196484 pmcid: 8957480 doi: 10.1016/j.celrep.2022.110418
El Masri, R. & Delon, J. RHO GTPases: from new partners to complex immune syndromes. Nat. Rev. Immunol. 21, 499–513 (2021).
pubmed: 33547421 doi: 10.1038/s41577-021-00500-7
Veselkov, K. et al. HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods. Sci. Rep. 9, 9237 (2019).
pubmed: 31270435 pmcid: 6610092 doi: 10.1038/s41598-019-45349-y
Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).
pubmed: 25754370 pmcid: 4531078 doi: 10.1111/acel.12344
Cazzaniga, A., Locatelli, L., Castiglioni, S. & Maier, J. A. M. The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J. 33, 5957–5966 (2019).
pubmed: 30817172 doi: 10.1096/fj.201801586RR
Locatelli, L., Cazzaniga, A., De Palma, C., Castiglioni, S. & Maier, J. A. M. Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J. 34, 1833–1845 (2020).
pubmed: 31914607 doi: 10.1096/fj.201901785RRR
Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391 (2016).
pubmed: 27843335 pmcid: 5098747 doi: 10.2147/IJGM.S114188
Guignandon, A. et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 28, 4077–4087 (2014).
pubmed: 24903274 pmcid: 5395736 doi: 10.1096/fj.14-249714
Liu, S. et al. RhoB induces the production of proinflammatory cytokines in TLR-triggered macrophages. Mol. Immunol. 87, 200–206 (2017).
pubmed: 28505515 doi: 10.1016/j.molimm.2017.04.015
Barrio, L., Saez de Guinoa, J. & Carrasco, Y. R. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases. J. Immunol. 191, 3867–3875 (2013).
pubmed: 23997213 doi: 10.4049/jimmunol.1301623
Trono, P., Tocci, A., Musella, M., Sistigu, A. & Nisticò, P. Actin cytoskeleton dynamics and type I IFN-mediated immune response: a dangerous liaison in cancer? Biology (Basel) 10, 913 (2021).
pubmed: 34571790
Irving, A. T. et al. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity 36, 795–806 (2012).
pubmed: 22633459 doi: 10.1016/j.immuni.2012.02.020
Ohman, T., Rintahaka, J., Kalkkinen, N., Matikainen, S. & Nyman, T. A. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J. Immunol. 182, 5682–5692 (2009).
pubmed: 19380815 doi: 10.4049/jimmunol.0803093
Mukherjee, A. et al. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions. J. Biol. Chem. 284, 6486–6494 (2009).
pubmed: 19122199 pmcid: 5405323 doi: 10.1074/jbc.M807547200
Blouin, C. M. & Lamaze, C. Interferon gamma receptor: the beginning of the journey. Front. Immunol. 4, 267 (2013).
pubmed: 24027571 pmcid: 3760442 doi: 10.3389/fimmu.2013.00267
Kim, B.-H., Shenoy, A. R., Kumar, P., Bradfield, C. J. & MacMicking, J. D. IFN-inducible GTPases in host cell defense. Cell Host Microbe 12, 432–444 (2012).
pubmed: 23084913 pmcid: 3490204 doi: 10.1016/j.chom.2012.09.007
Tretina, K., Park, E.-S., Maminska, A. & MacMicking, J. D. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J. Exp. Med. 216, 482–500 (2019).
pubmed: 30755454 pmcid: 6400534 doi: 10.1084/jem.20182031
Fisch, D. et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 38, e100926 (2019).
pubmed: 31268602 pmcid: 6600649 doi: 10.15252/embj.2018100926
Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).
pubmed: 24919149 doi: 10.1038/nature13449
Dufies, O. et al. Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nat. Microbiol. 6, 401–412 (2021).
pubmed: 33432150 pmcid: 7116836 doi: 10.1038/s41564-020-00832-5
Matalonga, J. et al. The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism. Cell Rep. 18, 1241–1255 (2017).
pubmed: 28147278 doi: 10.1016/j.celrep.2017.01.007
Singh, C. K. et al. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 28, 643–661 (2018).
pubmed: 28891317 pmcid: 5824489 doi: 10.1089/ars.2017.7290
Hayashi, Y., Yokota, A., Harada, H. & Huang, G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer. Cancer Sci. 110, 1510–1517 (2019).
pubmed: 30844107 pmcid: 6501028 doi: 10.1111/cas.13990
Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).
pubmed: 28396078 doi: 10.1016/j.it.2017.03.001
Stahn, A. C. et al. Increased core body temperature in astronauts during long-duration space missions. Sci. Rep. 7, 16180 (2017).
pubmed: 29170507 pmcid: 5701078 doi: 10.1038/s41598-017-15560-w
Liu, T. et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside. Front. Immunol. 11, 594735 (2020).
pubmed: 33281823 pmcid: 7705238 doi: 10.3389/fimmu.2020.594735
Peng, G. et al. Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J. Clin. Invest. 132, e156501 (2022).
pubmed: 35834333 pmcid: 9435650 doi: 10.1172/JCI156501
Kim, H.-B. et al. Aryl hydrocarbon receptors: evidence of therapeutic targets in chronic inflammatory skin diseases. Biomedicines 10, 1087 (2022).
pubmed: 35625824 pmcid: 9139118 doi: 10.3390/biomedicines10051087
Crucian, B. E. et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the international space station - relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav. Rev. 115, 68–76 (2020).
pubmed: 32464118 doi: 10.1016/j.neubiorev.2020.05.007
Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).
pubmed: 33440149 doi: 10.1016/j.celrep.2020.108609
Tanaka, K., Nishimura, N. & Kawai, Y. Adaptation to microgravity, deconditioning, and countermeasures. J. Physiol. Sci. 67, 271–281 (2017).
pubmed: 28000175 doi: 10.1007/s12576-016-0514-8
White, R. J. & Blomqvist, C. G. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85, 738–746 (1998).
pubmed: 9688754 doi: 10.1152/jappl.1998.85.2.738
Buckey, J. C. et al. Central venous pressure in space. J. Appl. Physiol. 81, 19–25 (1996).
pubmed: 8828643 doi: 10.1152/jappl.1996.81.1.19
Dixon, J. B. & Clark, T. K. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues. J. Neurophysiol. 123, 209–223 (2020).
pubmed: 31747329 doi: 10.1152/jn.00156.2019
Gertz, M. L. et al. Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep. 33, 108429 (2020).
pubmed: 33242408 pmcid: 9444344 doi: 10.1016/j.celrep.2020.108429
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923 pmcid: 4430369 doi: 10.1038/nbt.3192
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891 pmcid: 4676162 doi: 10.1186/s13059-015-0844-5
Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. L. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci. Rep. 8, 9588 (2018).
pubmed: 29942049 pmcid: 6018631 doi: 10.1038/s41598-018-27903-2
Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169 (2010).
pubmed: 20660011 pmcid: 2943622 doi: 10.1093/nar/gkq636
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).
pubmed: 28114287 pmcid: 5330805 doi: 10.1038/nmeth.4150
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452 pmcid: 4944528 doi: 10.1126/science.aad0501
Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20, 405 (2019).
pubmed: 31345161 pmcid: 6659269 doi: 10.1186/s12859-019-2996-x
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
pubmed: 19847166 pmcid: 2783335 doi: 10.1038/nature08460
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384 (2016).
pubmed: 26590256 doi: 10.1093/nar/gkv1277
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659 doi: 10.1038/s41592-020-01018-x
Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4, https://www.biorxiv.org/content/10.1101/2021.10.14.464362v1 (2022).
Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).
pubmed: 34507520 pmcid: 8431850 doi: 10.1186/s12859-021-04344-9
Gerencsér AA, A. A. & Adam-Vizi, V. Selective, high-resolution fluorescence imaging of mitochondrial Ca2+ concentration. Cell Calcium 30, 311–321 (2001).
pubmed: 11733937 doi: 10.1054/ceca.2001.0238
Gerencser, A. A., Doczi, J., Töröcsik, B., Bossy-Wetzel, E. & Adam-Vizi, V. Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys. J. 95, 2583–2598 (2008).
pubmed: 18424491 pmcid: 2517017 doi: 10.1529/biophysj.107.118620
Gerencser, A. A. et al. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J. Physiol. (Lond.) 590, 2845–2871 (2012).
pubmed: 22495585 doi: 10.1113/jphysiol.2012.228387
Li, D. et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 12, 2954 (2020).
pubmed: 32992479 pmcid: 7600916 doi: 10.3390/nu12102954
Ortega, R. & García, N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J. Bioenerg. Biomembr. 41, 41–47 (2009).
pubmed: 19296209 doi: 10.1007/s10863-009-9198-6
Jiang, J.-J., Zhang, G.-F., Zheng, J.-Y., Sun, J.-H. & Ding, S.-B. Targeting mitochondrial ROS-mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity. Front. Pharmacol. 13, 876550 (2022).
pubmed: 35496312 pmcid: 9039018 doi: 10.3389/fphar.2022.876550
Bouamama, S. & Bouamama, A. Quercetin handles cellular oxidant/antioxidant systems and mitigates immunosenescence hallmarks in human PBMCs: an in vitro study. J. Biochem. Mol. Toxicol. 37, e23354 (2023).
Wu, F. FEI38750/Immune_Dysfunction_in_Microgravity: Immune_Dysfunction_in_Microgravity. Zenodo https://doi.org/10.5281/zenodo.8247816 (2023).

Auteurs

Fei Wu (F)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Huixun Du (H)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.

Eliah Overbey (E)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.

JangKeun Kim (J)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.

Priya Makhijani (P)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.

Nicolas Martin (N)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Chad A Lerner (CA)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Khiem Nguyen (K)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Jordan Baechle (J)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Taylor R Valentino (TR)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Matias Fuentealba (M)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Juliet M Bartleson (JM)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Heather Halaweh (H)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Shawn Winer (S)

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.

Cem Meydan (C)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.

Francine Garrett-Bakelman (F)

Department of Medicine, University of Virginia, Charlottesville, VA, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Nazish Sayed (N)

Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Simon Melov (S)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Masafumi Muratani (M)

Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan.
Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.

Akos A Gerencser (AA)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Herbert G Kasler (HG)

Buck Institute for Research on Aging, Novato, CA, 94945, USA.

Afshin Beheshti (A)

Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94043, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.

Christopher E Mason (CE)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA. chm2042@med.cornell.edu.
The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA. chm2042@med.cornell.edu.
WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA. chm2042@med.cornell.edu.
The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA. chm2042@med.cornell.edu.

David Furman (D)

Buck Institute for Research on Aging, Novato, CA, 94945, USA. DFurman@buckinstitute.org.
Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA. DFurman@buckinstitute.org.
Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina. DFurman@buckinstitute.org.

Daniel A Winer (DA)

Buck Institute for Research on Aging, Novato, CA, 94945, USA. dwiner@buckinstitute.org.
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. dwiner@buckinstitute.org.
Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada. dwiner@buckinstitute.org.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. dwiner@buckinstitute.org.
Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada. dwiner@buckinstitute.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH