Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight.
Single-Cell Analysis
Space Flight
Humans
Animals
Mice
Leukocytes, Mononuclear
/ immunology
Weightlessness Simulation
Quercetin
/ pharmacology
Signal Transduction
Killer Cells, Natural
/ immunology
Weightlessness
T-Lymphocytes
/ immunology
Mice, Inbred C57BL
Machine Learning
Male
Female
Inflammation
/ immunology
Immunity, Innate
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
06
12
2022
accepted:
27
09
2023
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.
Identifiants
pubmed: 38862487
doi: 10.1038/s41467-023-42013-y
pii: 10.1038/s41467-023-42013-y
doi:
Substances chimiques
Quercetin
9IKM0I5T1E
Types de publication
Journal Article
Twin Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
4795Informations de copyright
© 2024. The Author(s).
Références
Martinez, E. M., Yoshida, M. C., Candelario, T. L. T. & Hughes-Fulford, M. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R480–R488 (2015).
pubmed: 25568077
pmcid: 4360066
doi: 10.1152/ajpregu.00449.2014
Tackett, N. et al. Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity. Sci. Rep. 9, 13825 (2019).
pubmed: 31554863
pmcid: 6761163
doi: 10.1038/s41598-019-50311-z
Crucian, B. et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 33, 456–465 (2013).
pubmed: 23100144
doi: 10.1007/s10875-012-9824-7
Paul, A. M. et al. Beyond low-earth orbit: characterizing immune and microrna differentials following simulated deep spaceflight conditions in mice. iScience 23, 101747 (2020).
pubmed: 33376970
pmcid: 7756144
doi: 10.1016/j.isci.2020.101747
Guéguinou, N. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J. Leukoc. Biol. 86, 1027–1038 (2009).
pubmed: 19690292
doi: 10.1189/jlb.0309167
Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407 (2019).
pubmed: 31681296
pmcid: 6797618
doi: 10.3389/fimmu.2019.02407
Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, 1437 (2018).
pubmed: 30018614
pmcid: 6038331
doi: 10.3389/fimmu.2018.01437
Chang, T. T. et al. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J. Leukoc. Biol. 92, 1133–1145 (2012).
pubmed: 22750545
pmcid: 3501893
doi: 10.1189/jlb.0312157
Hughes-Fulford, M., Chang, T. T., Martinez, E. M. & Li, C.-F. Spaceflight alters expression of microRNA during T-cell activation. FASEB J. 29, 4893–4900 (2015).
pubmed: 26276131
pmcid: 4653058
doi: 10.1096/fj.15-277392
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
pubmed: 33242417
pmcid: 7870178
doi: 10.1016/j.cell.2020.11.002
Bigley, A. B. et al. NK cell function is impaired during long-duration spaceflight. J. Appl. Physiol. 126, 842–853 (2019).
pubmed: 30382809
doi: 10.1152/japplphysiol.00761.2018
Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front. Microbiol. 10, 16 (2019).
pubmed: 30792698
pmcid: 6374706
doi: 10.3389/fmicb.2019.00016
Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1, 15013 (2015).
pubmed: 28725716
pmcid: 5515498
doi: 10.1038/npjmgrav.2015.13
Mehta, S. K. et al. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 3, 11 (2017).
pubmed: 28649633
pmcid: 5445581
doi: 10.1038/s41526-017-0015-y
Mehta, S. K. et al. Localization of VZV in saliva of zoster patients. J. Med. Virol. 89, 1686–1689 (2017).
pubmed: 28295404
doi: 10.1002/jmv.24807
Mehta, S. K. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61, 205–209 (2013).
pubmed: 23107825
doi: 10.1016/j.cyto.2012.09.019
Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
pubmed: 30975860
pmcid: 7580864
doi: 10.1126/science.aau8650
Spatz, J. M. et al. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci. Rep. 11, 11872 (2021).
pubmed: 34099760
pmcid: 8184772
doi: 10.1038/s41598-021-90458-2
Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).
pubmed: 35974148
doi: 10.1038/s41577-022-00761-w
Freed, L. E. & Vunjak-Novakovic, G. Spaceflight bioreactor studies of cells and tissues. Adv. Space Biol. Med. 8, 177–195 (2002).
pubmed: 12951697
doi: 10.1016/S1569-2574(02)08019-X
Nelson, E. S., Mulugeta, L. & Myers, J. G. Microgravity-induced fluid shift and ophthalmic changes. Life (Basel) 4, 621–665 (2014).
pubmed: 25387162
Barrila, J. et al. Spaceflight analogue culture enhances the host-pathogen interaction between salmonella and a 3-D biomimetic intestinal co-culture model. Front. Cell. Infect. Microbiol. 12, 705647 (2022).
pubmed: 35711662
pmcid: 9195300
doi: 10.3389/fcimb.2022.705647
Caron, G. et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J. Immunol. 175, 1551–1557 (2005).
pubmed: 16034093
doi: 10.4049/jimmunol.175.3.1551
Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).
pubmed: 34888528
pmcid: 8654267
doi: 10.1038/s43587-021-00082-y
Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).
pubmed: 35974106
pmcid: 9381717
doi: 10.1038/s41467-022-32552-1
Wu, F., Liu, Y.-Z. & Ling, B. MTD: a unique pipeline for host and meta-transcriptome joint and integrative analyses of RNA-seq data. Brief. Bioinformatics 23, bbac111 (2022).
pubmed: 35380623
doi: 10.1093/bib/bbac111
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).
pubmed: 31819264
doi: 10.1038/s41592-019-0667-5
Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).
pubmed: 31061481
pmcid: 6610714
doi: 10.1038/s41587-019-0114-2
Vorperian, S. K. & Moufarrej, M. N. Tabula Sapiens Consortium & Quake, S. R. Cell types of origin of the cell-free transcriptome. Nat. Biotechnol. 40, 855–861 (2022).
pubmed: 35132263
pmcid: 9200634
doi: 10.1038/s41587-021-01188-9
Nataraj, N. B. et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 38, 110418 (2022).
pubmed: 35196484
pmcid: 8957480
doi: 10.1016/j.celrep.2022.110418
El Masri, R. & Delon, J. RHO GTPases: from new partners to complex immune syndromes. Nat. Rev. Immunol. 21, 499–513 (2021).
pubmed: 33547421
doi: 10.1038/s41577-021-00500-7
Veselkov, K. et al. HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods. Sci. Rep. 9, 9237 (2019).
pubmed: 31270435
pmcid: 6610092
doi: 10.1038/s41598-019-45349-y
Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).
pubmed: 25754370
pmcid: 4531078
doi: 10.1111/acel.12344
Cazzaniga, A., Locatelli, L., Castiglioni, S. & Maier, J. A. M. The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J. 33, 5957–5966 (2019).
pubmed: 30817172
doi: 10.1096/fj.201801586RR
Locatelli, L., Cazzaniga, A., De Palma, C., Castiglioni, S. & Maier, J. A. M. Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J. 34, 1833–1845 (2020).
pubmed: 31914607
doi: 10.1096/fj.201901785RRR
Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391 (2016).
pubmed: 27843335
pmcid: 5098747
doi: 10.2147/IJGM.S114188
Guignandon, A. et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 28, 4077–4087 (2014).
pubmed: 24903274
pmcid: 5395736
doi: 10.1096/fj.14-249714
Liu, S. et al. RhoB induces the production of proinflammatory cytokines in TLR-triggered macrophages. Mol. Immunol. 87, 200–206 (2017).
pubmed: 28505515
doi: 10.1016/j.molimm.2017.04.015
Barrio, L., Saez de Guinoa, J. & Carrasco, Y. R. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases. J. Immunol. 191, 3867–3875 (2013).
pubmed: 23997213
doi: 10.4049/jimmunol.1301623
Trono, P., Tocci, A., Musella, M., Sistigu, A. & Nisticò, P. Actin cytoskeleton dynamics and type I IFN-mediated immune response: a dangerous liaison in cancer? Biology (Basel) 10, 913 (2021).
pubmed: 34571790
Irving, A. T. et al. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity 36, 795–806 (2012).
pubmed: 22633459
doi: 10.1016/j.immuni.2012.02.020
Ohman, T., Rintahaka, J., Kalkkinen, N., Matikainen, S. & Nyman, T. A. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J. Immunol. 182, 5682–5692 (2009).
pubmed: 19380815
doi: 10.4049/jimmunol.0803093
Mukherjee, A. et al. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions. J. Biol. Chem. 284, 6486–6494 (2009).
pubmed: 19122199
pmcid: 5405323
doi: 10.1074/jbc.M807547200
Blouin, C. M. & Lamaze, C. Interferon gamma receptor: the beginning of the journey. Front. Immunol. 4, 267 (2013).
pubmed: 24027571
pmcid: 3760442
doi: 10.3389/fimmu.2013.00267
Kim, B.-H., Shenoy, A. R., Kumar, P., Bradfield, C. J. & MacMicking, J. D. IFN-inducible GTPases in host cell defense. Cell Host Microbe 12, 432–444 (2012).
pubmed: 23084913
pmcid: 3490204
doi: 10.1016/j.chom.2012.09.007
Tretina, K., Park, E.-S., Maminska, A. & MacMicking, J. D. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J. Exp. Med. 216, 482–500 (2019).
pubmed: 30755454
pmcid: 6400534
doi: 10.1084/jem.20182031
Fisch, D. et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 38, e100926 (2019).
pubmed: 31268602
pmcid: 6600649
doi: 10.15252/embj.2018100926
Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).
pubmed: 24919149
doi: 10.1038/nature13449
Dufies, O. et al. Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nat. Microbiol. 6, 401–412 (2021).
pubmed: 33432150
pmcid: 7116836
doi: 10.1038/s41564-020-00832-5
Matalonga, J. et al. The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism. Cell Rep. 18, 1241–1255 (2017).
pubmed: 28147278
doi: 10.1016/j.celrep.2017.01.007
Singh, C. K. et al. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 28, 643–661 (2018).
pubmed: 28891317
pmcid: 5824489
doi: 10.1089/ars.2017.7290
Hayashi, Y., Yokota, A., Harada, H. & Huang, G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer. Cancer Sci. 110, 1510–1517 (2019).
pubmed: 30844107
pmcid: 6501028
doi: 10.1111/cas.13990
Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).
pubmed: 28396078
doi: 10.1016/j.it.2017.03.001
Stahn, A. C. et al. Increased core body temperature in astronauts during long-duration space missions. Sci. Rep. 7, 16180 (2017).
pubmed: 29170507
pmcid: 5701078
doi: 10.1038/s41598-017-15560-w
Liu, T. et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside. Front. Immunol. 11, 594735 (2020).
pubmed: 33281823
pmcid: 7705238
doi: 10.3389/fimmu.2020.594735
Peng, G. et al. Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J. Clin. Invest. 132, e156501 (2022).
pubmed: 35834333
pmcid: 9435650
doi: 10.1172/JCI156501
Kim, H.-B. et al. Aryl hydrocarbon receptors: evidence of therapeutic targets in chronic inflammatory skin diseases. Biomedicines 10, 1087 (2022).
pubmed: 35625824
pmcid: 9139118
doi: 10.3390/biomedicines10051087
Crucian, B. E. et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the international space station - relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav. Rev. 115, 68–76 (2020).
pubmed: 32464118
doi: 10.1016/j.neubiorev.2020.05.007
Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).
pubmed: 33440149
doi: 10.1016/j.celrep.2020.108609
Tanaka, K., Nishimura, N. & Kawai, Y. Adaptation to microgravity, deconditioning, and countermeasures. J. Physiol. Sci. 67, 271–281 (2017).
pubmed: 28000175
doi: 10.1007/s12576-016-0514-8
White, R. J. & Blomqvist, C. G. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85, 738–746 (1998).
pubmed: 9688754
doi: 10.1152/jappl.1998.85.2.738
Buckey, J. C. et al. Central venous pressure in space. J. Appl. Physiol. 81, 19–25 (1996).
pubmed: 8828643
doi: 10.1152/jappl.1996.81.1.19
Dixon, J. B. & Clark, T. K. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues. J. Neurophysiol. 123, 209–223 (2020).
pubmed: 31747329
doi: 10.1152/jn.00156.2019
Gertz, M. L. et al. Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep. 33, 108429 (2020).
pubmed: 33242408
pmcid: 9444344
doi: 10.1016/j.celrep.2020.108429
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923
pmcid: 4430369
doi: 10.1038/nbt.3192
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).
pubmed: 30954475
pmcid: 6853612
doi: 10.1016/j.cels.2019.03.003
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891
pmcid: 4676162
doi: 10.1186/s13059-015-0844-5
Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. L. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci. Rep. 8, 9588 (2018).
pubmed: 29942049
pmcid: 6018631
doi: 10.1038/s41598-018-27903-2
Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169 (2010).
pubmed: 20660011
pmcid: 2943622
doi: 10.1093/nar/gkq636
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).
pubmed: 28114287
pmcid: 5330805
doi: 10.1038/nmeth.4150
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644
pmcid: 4122333
doi: 10.1038/nbt.2859
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452
pmcid: 4944528
doi: 10.1126/science.aad0501
Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20, 405 (2019).
pubmed: 31345161
pmcid: 6659269
doi: 10.1186/s12859-019-2996-x
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
pubmed: 19847166
pmcid: 2783335
doi: 10.1038/nature08460
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384 (2016).
pubmed: 26590256
doi: 10.1093/nar/gkv1277
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659
doi: 10.1038/s41592-020-01018-x
Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4, https://www.biorxiv.org/content/10.1101/2021.10.14.464362v1 (2022).
Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).
pubmed: 34507520
pmcid: 8431850
doi: 10.1186/s12859-021-04344-9
Gerencsér AA, A. A. & Adam-Vizi, V. Selective, high-resolution fluorescence imaging of mitochondrial Ca2+ concentration. Cell Calcium 30, 311–321 (2001).
pubmed: 11733937
doi: 10.1054/ceca.2001.0238
Gerencser, A. A., Doczi, J., Töröcsik, B., Bossy-Wetzel, E. & Adam-Vizi, V. Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys. J. 95, 2583–2598 (2008).
pubmed: 18424491
pmcid: 2517017
doi: 10.1529/biophysj.107.118620
Gerencser, A. A. et al. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J. Physiol. (Lond.) 590, 2845–2871 (2012).
pubmed: 22495585
doi: 10.1113/jphysiol.2012.228387
Li, D. et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 12, 2954 (2020).
pubmed: 32992479
pmcid: 7600916
doi: 10.3390/nu12102954
Ortega, R. & García, N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J. Bioenerg. Biomembr. 41, 41–47 (2009).
pubmed: 19296209
doi: 10.1007/s10863-009-9198-6
Jiang, J.-J., Zhang, G.-F., Zheng, J.-Y., Sun, J.-H. & Ding, S.-B. Targeting mitochondrial ROS-mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity. Front. Pharmacol. 13, 876550 (2022).
pubmed: 35496312
pmcid: 9039018
doi: 10.3389/fphar.2022.876550
Bouamama, S. & Bouamama, A. Quercetin handles cellular oxidant/antioxidant systems and mitigates immunosenescence hallmarks in human PBMCs: an in vitro study. J. Biochem. Mol. Toxicol. 37, e23354 (2023).
Wu, F. FEI38750/Immune_Dysfunction_in_Microgravity: Immune_Dysfunction_in_Microgravity. Zenodo https://doi.org/10.5281/zenodo.8247816 (2023).