Genetics of child aggression, a systematic review.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 17 03 2023
accepted: 11 03 2024
revised: 07 03 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.

Identifiants

pubmed: 38862490
doi: 10.1038/s41398-024-02870-7
pii: 10.1038/s41398-024-02870-7
doi:

Substances chimiques

Catechol O-Methyltransferase EC 2.1.1.6
COMT protein, human EC 2.1.1.6
DRD4 protein, human 0
Monoamine Oxidase EC 1.4.3.4
Receptors, Dopamine D4 137750-34-6

Types de publication

Journal Article Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

252

Informations de copyright

© 2024. The Author(s).

Références

Pikard J, Roberts N, Groll D. Pediatric referrals for urgent psychiatric consultation: clinical characteristics, diagnoses and outcome of 4 to 12 year old children. J Can Acad Child Adolesc Psychiatry. 2018;27:245–51.
pubmed: 30487940 pmcid: 6254263
World Health Organization. Youth violence. 2020 May 10, 2022]; Available from: https://www.who.int/news-room/fact-sheets/detail/youth-violence .
Centers for Disease Control and Prevention. Preventing youth violence. 2022 April 14, 2022]; Available from: https://www.cdc.gov/violenceprevention/youthviolence/fastfact.html .
Anderson CA, Bushman BJ. Human aggression. Annu Rev Psychol. 2002;53:27–51.
pubmed: 11752478 doi: 10.1146/annurev.psych.53.100901.135231
Egger HL, Angold A. Common emotional and behavioral disorders in preschool children: presentation, nosology, and epidemiology. J Child Psychol Psychiatry. 2006;47:313–37.
pubmed: 16492262 doi: 10.1111/j.1469-7610.2006.01618.x
Bierman KL, Coie J, Dodge K, Greenberg M, Lochman J, McMohan R, et al. School outcomes of aggressive-disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program. Aggress Behav. 2013;39:114–30.
pubmed: 23386568 doi: 10.1002/ab.21467
Colman I, Murray J, Abbott RA, Maughan B, Kuh D, Croudace TJ, et al. Outcomes of conduct problems in adolescence: 40 year follow-up of national cohort. BMJ. 2009;338:a2981.
pubmed: 19131382 pmcid: 2615547 doi: 10.1136/bmj.a2981
Moffitt TE, Caspi A, Harrington H, Milne BJ. Males on the life-course-persistent and adolescence-limited antisocial pathways: follow-up at age 26 years. Dev Psychopathol. 2002;14:179–207.
pubmed: 11893092 doi: 10.1017/S0954579402001104
Pedersen S, Vitaro F, Barker ED, Borge AI. The timing of middle-childhood peer rejection and friendship: linking early behavior to early-adolescent adjustment. Child Dev. 2007;78:1037–51.
pubmed: 17650124 doi: 10.1111/j.1467-8624.2007.01051.x
Foster EM, Jones DE. The high costs of aggression: public expenditures resulting from conduct disorder. Am J Public Health. 2005;95:1767–72.
pubmed: 16131639 pmcid: 1449434 doi: 10.2105/AJPH.2004.061424
Zhang T, Hoddenbagh J, The Costs of the Youth Criminal Justice System 2010. 2013, Department of Justice Canada.
Campbell SB. Behavior problems in preschool children: a review of recent research. J Child Psychol Psychiatry. 1995;36:113–49.
pubmed: 7714027 doi: 10.1111/j.1469-7610.1995.tb01657.x
Statistics Canada. Browse our infographics by subject. 2014 May 12, 2022]; Available from: https://www150.statcan.gc.ca/n1/pub/11-627-m/index-eng.htm .
Stemmler M, Losel F. Different patterns of boys’ externalizing behavior and their relation to risk factors: a longitudinal study of preschool children. Bull Soc Sci Med Gd Duche Luxemb. 2010;Spec No 1:53–67.
Wrangham RW. Two types of aggression in human evolution. Proc Natl Acad Sci USA. 2018;115:245–53.
pubmed: 29279379 doi: 10.1073/pnas.1713611115
Yamasaki K, Nishida N. The relationship between three types of aggression and peer relations in elementary school children. Int J Psychol. 2009;44:179–86.
pubmed: 22029493 doi: 10.1080/00207590701656770
Sakai A, Yamasaki K. [Development of a proactive and reactive aggression questionnaire for elementary school children]. Shinrigaku Kenkyu. 2004;75:254–61.
pubmed: 15745072 doi: 10.4992/jjpsy.75.254
Blair RJ, Leibenluft E, Pine DS. Conduct disorder and callous-unemotional traits in youth. N. Engl J Med. 2014;371:2207–16.
pubmed: 25470696 pmcid: 6312699 doi: 10.1056/NEJMra1315612
Frick PJ, Kimonis ER, Dandreaux DM, Farell JM. The 4 year stability of psychopathic traits in non-referred youth. Behav Sci Law. 2003;21:713–36.
pubmed: 14696028 doi: 10.1002/bsl.568
Nock MK, Kazdin AE, Hiripi E, Kessler RC. Lifetime prevalence, correlates, and persistence of oppositional defiant disorder: results from the National Comorbidity Survey Replication. J Child Psychol Psychiatry. 2007;48:703–13.
pubmed: 17593151 doi: 10.1111/j.1469-7610.2007.01733.x
Burke JD, Loeber R, Lahey BB, Rathouz PJ. Developmental transitions among affective and behavioral disorders in adolescent boys. J Child Psychol Psychiatry. 2005;46:1200–10.
pubmed: 16238667 doi: 10.1111/j.1469-7610.2005.00422.x
Burt SA. Rethinking environmental contributions to child and adolescent psychopathology: a meta-analysis of shared environmental influences. Psychol Bull. 2009;135:608–37.
pubmed: 19586164 doi: 10.1037/a0015702
Tuvblad C, Baker LA. Human aggression across the lifespan: genetic propensities and environmental moderators. Adv Genet. 2011;75:171–214.
pubmed: 22078481 doi: 10.1016/B978-0-12-380858-5.00007-1
Jarvik LF, Klodin V, Matsuyama SS. Human aggression and the extra Y chromosome. Fact or fantasy? Am Psychol. 1973;28:674–82.
pubmed: 4727279 doi: 10.1037/h0035758
Plomin R, Nitz K, Rowe DC, Behavioral genetics and aggressive behavior in childhood, in Handbook of developmental psychopathology. 1990, Plenum Press. p. 119-33.
Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262:578–80.
pubmed: 8211186 doi: 10.1126/science.8211186
Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet. 1998;103:273–9.
pubmed: 9799080 doi: 10.1007/s004390050816
Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, et al. Role of genotype in the cycle of violence in maltreated children. Science. 2002;297:851–4.
pubmed: 12161658 doi: 10.1126/science.1072290
Odintsova VV, Roetman PJ, Ip HF, Pool R, Van der Laan CM, Tona KD, et al. Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool. Psychiatr Genet. 2019;29:170–90.
pubmed: 31464998 doi: 10.1097/YPG.0000000000000239
Mick E, McGough J, Deutsch CK, Frazier JA, Kennedy D, Goldberg RJ. Genome-wide association study of proneness to anger. PLoS One. 2014;9:e87257.
pubmed: 24489884 pmcid: 3905014 doi: 10.1371/journal.pone.0087257
van der Laan CM, Morosoli-Garcia JJ, van de Weijer SGA, Colodro-Conde L, Consortium A, Lupton MK, et al. Continuity of genetic risk for aggressive behavior across the life-course. Behav Genet. 2021;51:592–606.
pubmed: 34390460 pmcid: 8390412 doi: 10.1007/s10519-021-10076-6
Bonvicini C, Faraone SV, Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry. 2018;19:80–100.
pubmed: 28097908 doi: 10.1080/15622975.2017.1282175
Anholt RR, Mackay TF. Genetics of aggression. Annu Rev Genet. 2012;46:145–64.
pubmed: 22934647 doi: 10.1146/annurev-genet-110711-155514
Twitchell GR, Hanna GL, Cook EH, Stoltenberg SF, Fitzgerald H, et al. Serotonin transporter promoter polymorphism genotype is associated with behavioral disinhibition and negative affect in children of alcoholics. Alcohol Clin Exp Res. 2001;25:953–9.
pubmed: 11505018 doi: 10.1111/j.1530-0277.2001.tb02302.x
Pappa I, St Pourcain B, Benke K, Cavadino A, Hakulinen C, Nivard MG, et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet. 2016;171:562–72.
pubmed: 26087016 doi: 10.1002/ajmg.b.32333
Jamnik MR, DiLalla LF. A multimethodological study of preschoolers’ preferences for aggressive television and video games. J Genet Psychol. 2018;179:156–69.
pubmed: 29672232 doi: 10.1080/00221325.2018.1454883
Achterberg M, van Duijvenvoorde ACK, van der Meulen M, Bakermans-Kranenburg MJ, Crone EA. Heritability of aggression following social evaluation in middle childhood: an fMRI study. Hum Brain Mapp. 2018;39:2828–41.
pubmed: 29528161 pmcid: 6055731 doi: 10.1002/hbm.24043
Feinberg ME, Button TM, Neiderhiser JM, Reiss D, Hetherington EM. Parenting and adolescent antisocial behavior and depression: evidence of genotype x parenting environment interaction. Arch Gen Psychiatry. 2007;64:457–65.
pubmed: 17404122 doi: 10.1001/archpsyc.64.4.457
Slawinski BL, Klump KL, Burt SA. The etiology of social aggression: a nuclear twin family study. Psychol Med. 2019;49:162–9.
pubmed: 29607796 doi: 10.1017/S0033291718000697
Orri M, Geoffroy MC, Turecki G, Feng B, Brendgen M, Vitaro F, et al. Contribution of genes and environment to the longitudinal association between childhood impulsive-aggression and suicidality in adolescence. J Child Psychol Psychiatry. 2020;61:711–20.
pubmed: 31782164 doi: 10.1111/jcpp.13163
Lacourse E, Boivin M, Brendgen M, Petitclerc A, Girard A, Vitaro F, et al. A longitudinal twin study of physical aggression during early childhood: evidence for a developmentally dynamic genome. Psychol Med. 2014;44:2617–27.
pubmed: 24443874 doi: 10.1017/S0033291713003218
Van Hulle CA, Waldman I, Lahey BB. Sex differences in the genetic and environmental influences on self-reported non-aggressive and aggressive conduct disorder symptoms in early and middle adolescence. Behav Genet. 2018;48:271–82.
pubmed: 29948512 pmcid: 6051422 doi: 10.1007/s10519-018-9907-1
Lawson DC, Turic D, Langley K, Pay HM, Govan CF, Norton N, et al. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2003;116B:84–89.
pubmed: 12497620 doi: 10.1002/ajmg.b.10002
Ma R, Jia H, Yi F, Ming Q, Wang X, Gao Y, et al. Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents. Neurosci Lett. 2016;610:144–9.
pubmed: 26562313 doi: 10.1016/j.neulet.2015.11.009
Beitchman JH, Mik HM, Ehtesham S, Douglas L, Kennedy JL. MAOA and persistent, pervasive childhood aggression. Mol Psychiatry. 2004;9:546–7.
pubmed: 15024395 doi: 10.1038/sj.mp.4001492
Pingault JB, Cote SM, Booij L, Ouellet-Mohn I, Castellanos-Ryan N, Vitaro F, et al. Age-dependent effect of the MAOA gene on childhood physical aggression. Mol Psychiatry. 2013;18:1151–2.
pubmed: 23247077 doi: 10.1038/mp.2012.173
Kant T, Koyama E, Zai CC, Beitchman JH, Kennedy JL. Association of the MAOA-uVNTR polymorphism with psychopathic traits may change from childhood to adolescence. Eur Arch Psychiatry Clin Neurosci. 2022;272:1517–21.
pubmed: 35038001 doi: 10.1007/s00406-021-01370-9
Kiive E, Laas K, Akkermann K, Comasco E, Oreland L, Veidebaum T, et al. Mitigating aggressiveness through education? The monoamine oxidase A genotype and mental health in general population. Acta Neuropsychiatr. 2014;26:19–28.
pubmed: 25142096 doi: 10.1017/neu.2013.34
Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, et al. MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry. 2009;65:417–24.
pubmed: 18996506 doi: 10.1016/j.biopsych.2008.09.013
Zhang Y, Ming Q, Wang X, Yao S. The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents. Psychiatr Genet. 2016;26:117–23.
pubmed: 26945458 doi: 10.1097/YPG.0000000000000125
Zhang Y, Ming Q-S, Yi J-Y, Wang X, Chai Q-L, Yao S-Q. Gene-gene-environment interactions of serotonin transporter, monoamine oxidase a and childhood maltreatment predict aggressive behavior in Chinese adolescents. Front Behav Neurosci. 2017;11:17.
pubmed: 28203149 pmcid: 5285338 doi: 10.3389/fnbeh.2017.00017
Edwards AC, Dodge KA, Latendresse SJ, Lansford JE, Bates JE, Pettit GS, et al. MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry. 2010;51:679–87.
pubmed: 19951362 doi: 10.1111/j.1469-7610.2009.02196.x
Pickles A, Hill J, Breen G, Quinn J, Abbott K, Jones H, et al. Evidence for interplay between genes and parenting on infant temperament in the first year of life: monoamine oxidase A polymorphism moderates effects of maternal sensitivity on infant anger proneness. J Child Psychol Psychiatry. 2013;54:1308–17.
pubmed: 23738520 doi: 10.1111/jcpp.12081
Zhang W, Cao C, Wang M, Ji L, Cao Y. Monoamine oxidase A (MAOA) and catechol-O-methyltransferase (COMT) gene polymorphisms interact with maternal parenting in association with adolescent reactive aggression but not proactive aggression: evidence of differential susceptibility. J Youth Adolesc. 2016;45:812–29.
pubmed: 26932718 doi: 10.1007/s10964-016-0442-1
Galán CA, Choe DE, Forbes EE, Shaw DS. The interaction between monoamine oxidase A and punitive discipline in the development of antisocial behavior: Mediation by maladaptive social information processing. Dev Psychopathol. 2017;29:1235–52.
pubmed: 28031080 doi: 10.1017/S0954579416001279
Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci. 2008;28:8709–23.
pubmed: 18753372 pmcid: 2561993 doi: 10.1523/JNEUROSCI.2077-08.2008
Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998;95:9991–6.
pubmed: 9707588 pmcid: 21449 doi: 10.1073/pnas.95.17.9991
Kuperman S, Kramer J, Loney J. Enzyme activity and behavior in hyperactive children grown up. Biol Psychiatry. 1988;24:375–83.
pubmed: 3408755 doi: 10.1016/0006-3223(88)90173-4
Qayyum A, Zai CC, Hirata Y, Tiwari AK, Cheema S, Nowrouzi B, et al. The role of the catechol-o-methyltransferase (COMT) GeneVal158Met in aggressive behavior, a review of genetic studies. Curr Neuropharmacol. 2015;13:802–14.
pubmed: 26630958 pmcid: 4759319 doi: 10.2174/1570159X13666150612225836
Caspi A, Langley K, Milne B, Moffitt TE, O’Donovan M, Owen MJ, et al. A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2008;65:203–10.
pubmed: 18250258 doi: 10.1001/archgenpsychiatry.2007.24
Albaugh MD, Harder VS, Althoff RR, Rettew DC, Ehli EA, Lengyel-Nelson T, et al. COMT Val158Met genotype as a risk factor for problem behaviors in youth. J Am Acad Child Adolesc Psychiatry. 2010;49:841–9.
pubmed: 20643317 pmcid: 3141335 doi: 10.1016/j.jaac.2010.05.015
Bearden CE, Jawad AF, Lynch DR, Monterossso JR, Sokol S, McDonald-McGinn DM, et al. Effects of COMT genotype on behavioral symptomatology in the 22q11.2 deletion syndrome. Child Neuropsychol. 2005;11:109–17.
pubmed: 15846854 pmcid: 2810976 doi: 10.1080/09297040590911239
Hirata Y, Zai CC, Nowrouzi B, Beitchman JH, Kennedy JL. Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children. Aggress Behav. 2013;39:45–51.
pubmed: 22972758 doi: 10.1002/ab.21448
Wang M, Li H, Deater-Deckard K, Zhang W. Interacting effect of catechol-O-methyltransferase (COMT) and monoamine oxidase a (MAOA) gene polymorphisms, and stressful life events on aggressive behavior in Chinese male adolescents. Front Psychol. 2018;9:1079.
pubmed: 30018578 pmcid: 6037980 doi: 10.3389/fpsyg.2018.01079
Hygen BW, Guzey IC, Belsky J, Berg-Nielsen TS, Wichstrøm L. Catechol-O-methyltransferase Val158Met genotype moderates the effect of disorganized attachment on social development in young children. Dev Psychopathol. 2014;26:947–61.
pubmed: 24914507 doi: 10.1017/S0954579414000492
Hygen BW, Belsky J, Stenseng F, Lydersen S, Guzey IC, Wichstrøm L. Child exposure to serious life events, COMT, and aggression: Testing differential susceptibility theory. Dev Psychol. 2015;51:1098–104.
pubmed: 26053146 doi: 10.1037/dev0000020
Kant T, Koyama E, Zai CC, Beitchman JH, Kennedy JL. COMT Val/Met and psychopathic traits in children and adolescents: a systematic review and new evidence of a developmental trajectory toward psychopathy. Int J Mol Sci. 2022;23:1782.
pubmed: 35163702 pmcid: 8836546 doi: 10.3390/ijms23031782
Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet. 1993;2:767–73.
pubmed: 8353495 doi: 10.1093/hmg/2.6.767
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci. 2010;67:1971–86.
pubmed: 20165900 pmcid: 11115718 doi: 10.1007/s00018-010-0293-y
Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, et al. Multiple dopamine D4 receptor variants in the human population. Nature. 1992;358:149–52.
pubmed: 1319557 doi: 10.1038/358149a0
Asghari V, Schoots O, van Kats S, Ohara K, Jovanovic V, Guan HC, et al. Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol Pharm. 1994;46:364–73.
Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem. 1995;65:1157–65.
pubmed: 7643093 doi: 10.1046/j.1471-4159.1995.65031157.x
Schoots O, Van Tol HH. The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J. 2003;3:343–8.
pubmed: 14581929 doi: 10.1038/sj.tpj.6500208
Van Craenenbroeck K, Clark SD, Cox MJ, Oak JN, Liu F, Van Tol HH. Folding efficiency is rate-limiting in dopamine D4 receptor biogenesis. J Biol Chem. 2005;280:19350–7.
pubmed: 15755724 doi: 10.1074/jbc.M414043200
Van Craenenbroeck K, Borroto-Escuela DO, Romero-Fernandez W, Skieterska K, Rondou P, Lintermans B, et al. Dopamine D4 receptor oligomerization-contribution to receptor biogenesis. FEBS J. 2011;278:1333–44.
pubmed: 21320289 doi: 10.1111/j.1742-4658.2011.08052.x
Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, et al. Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun. 2011;404:928–34.
pubmed: 21184734 doi: 10.1016/j.bbrc.2010.12.083
Nobile M, Giorda R, Marino C, Carlet O, Pastore V, Vanzin L, et al. Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region polymorphisms to externalization in preadolescence. Dev Psychopathol. 2007;19:1147–60.
pubmed: 17931440 doi: 10.1017/S0954579407000594
Hohmann S, Becker K, Fellinger J, Banaschewski T, Schmidt MH, Esser G, et al. Evidence for epistasis between the 5-HTTLPR and the dopamine D4 receptor polymorphisms in externalizing behavior among 15-year-olds. J Neural Transm (Vienna). 2009;116:1621–9.
pubmed: 19696961 doi: 10.1007/s00702-009-0290-1
Farbiash T, Berger A, Atzaba-Poria N, Auerbach JG. Prediction of preschool aggression from DRD4 risk, parental ADHD symptoms, and home chaos. J Abnorm Child Psychol. 2014;42:489–99.
pubmed: 23929006 doi: 10.1007/s10802-013-9791-3
Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJS, Banaschewski T, et al. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav Brain Funct. 2008;4:48.
pubmed: 18937842 pmcid: 2577091 doi: 10.1186/1744-9081-4-48
DeYoung CG, Peterson JB, Séguin JR, Mejia JM, Pihl RO, Beitchman JH, et al. The dopamine D4 receptor gene and moderation of the association between externalizing behavior and IQ. Arch Gen Psychiatry. 2006;63:1410–6.
pubmed: 17146015 pmcid: 3283582 doi: 10.1001/archpsyc.63.12.1410
Zai CC, Ehtesham S, Choi E, Nowrouzi B, de Luca V, Stankovich L, et al. Dopaminergic system genes in childhood aggression: possible role for DRD2. World J Biol Psychiatry. 2012;13:65–74.
pubmed: 21247255 doi: 10.3109/15622975.2010.543431
Bakermans-Kranenburg MJ, van Ijzendoorn MH. Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Dev Psychobiol. 2006;48:406–9.
pubmed: 16770765 doi: 10.1002/dev.20152
Zohsel K, Buchmann AF, Blomeyer D, Hohm E, Schmidt MH, Esser G, et al. Mothers’ prenatal stress and their children’s antisocial outcomes-a moderating role for the dopamine D4 receptor (DRD4) gene. J Child Psychol Psychiatry. 2014;55:69–76.
pubmed: 24102377 doi: 10.1111/jcpp.12138
DiLalla LF, Elam KK, Smolen A. Genetic and gene-environment interaction effects on preschoolers’ social behaviors. Dev Psychobiol. 2009;51:451–64.
pubmed: 19582792 doi: 10.1002/dev.20384
Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, et al. Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am J Psychiatry. 2006;163:1103–5.
pubmed: 16741214 doi: 10.1176/ajp.2006.163.6.1103
Haberstick BC, Smolen A, Hewitt JK. Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry. 2006;59:836–43.
pubmed: 16412987 doi: 10.1016/j.biopsych.2005.10.008
Sysoeva OV, Maluchenko NV, Timofeeva MA, Portnova GV, Kulikova MA, Tonevitsky AG, et al. Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups. Int J Psychophysiol. 2009;72:173–8.
pubmed: 19121342 doi: 10.1016/j.ijpsycho.2008.12.005
Letourneau NL, de Koning APJ, Sekhon B, Ntanda HN, Kobor M, Deane AJ, et al. Parenting Interacts With Plasticity Genes in Predicting Behavioral Outcomes in Preschoolers. Can J Nurs Res. 2020;52:290–307.
pubmed: 31403319 doi: 10.1177/0844562119863612
Cadoret RJ, Langbehn D, Caspers K, Troughton EP, Yucuis R, Sandhu HK, et al. Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr Psychiatry. 2003;44:88–101.
pubmed: 12658617 doi: 10.1053/comp.2003.50018
Laas K, Kiive E, Mäestu J, Vaht M, Veidebaum T, Harro J. Nice guys: Homozygocity for the TPH2 -703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. J Affect Disord. 2017;215:230–6.
pubmed: 28342337 doi: 10.1016/j.jad.2017.03.045
Nedic Erjavec G, Tudor L, Nikolac Perkovic M, Podobnik J, Dodig Curkovic K, Curkovic M, et al. Serotonin 5-HT(2A) receptor polymorphisms are associated with irritability and aggression in conduct disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2022;117:110542.
pubmed: 35257831 doi: 10.1016/j.pnpbp.2022.110542
Davidge KM, Atkinson L, Douglas L, Lee V, Shapiro S, Kennedy JL, et al. Association of the serotonin transporter and 5HT1Dbeta receptor genes with extreme, persistent and pervasive aggressive behaviour in children. Psychiatr Genet. 2004;14:143–6.
pubmed: 15318027 doi: 10.1097/00041444-200409000-00004
Hakulinen C, Jokela M, Hintsanen M, Merjonen P, Pulkki-Råback L, Seppälä I, et al. Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study. J Behav Med. 2013;36:583–90.
pubmed: 22945537 doi: 10.1007/s10865-012-9452-y
Sener EF, Taheri S, Sahin MC, Bayramov KK, Marasli MK, Zararsiz G, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J Mol Neurosci. 2019;67:89–96.
pubmed: 30519864 doi: 10.1007/s12031-018-1213-0
Paes LA, Torre OHD, Henriques TB, de Mello MP, Celeri E, Dalgalarrondo P, et al. Association between serotonin 2C receptor gene (HTR2C) polymorphisms and psychopathological symptoms in children and adolescents. Braz J Med Biol Res. 2018;51:e7252.
pubmed: 29924134 pmcid: 6010321 doi: 10.1590/1414-431x20187252
Wang FL, Chassin L, Bates JE, Dick D, Lansford JE, Pettit GS, et al. Serotonin functioning and adolescents’ alcohol use: A genetically informed study examining mechanisms of risk. Dev Psychopathol. 2018;30:213–33.
pubmed: 28534453 doi: 10.1017/S095457941700058X
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic-pituitary-adrenal axis activity during development and the emergence of aggression-Animal studies. Neurosci Biobehav Rev. 2018;91:138–52.
pubmed: 27751733 doi: 10.1016/j.neubiorev.2016.10.008
Zai CC, Muir KE, Nowrouzi B, Shaikh SA, Choi E, Berall L, et al. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012;200:784–8.
pubmed: 22910476 doi: 10.1016/j.psychres.2012.07.031
Malik AI, Zai CC, Berall L, Abu Z, Din F, Nowrouzi B, et al. The role of genetic variants in genes regulating the oxytocin-vasopressin neurohumoral system in childhood-onset aggression. Psychiatr Genet. 2014;24:201–10.
pubmed: 24871896 doi: 10.1097/YPG.0000000000000044
Vollebregt O, Koyama E, Zai CC, Shaikh SA, Lisoway AJ, Kennedy JL, et al. Evidence for association of vasopressin receptor 1A promoter region repeat with childhood onset aggression. J Psychiatr Res. 2021;140:522–8.
pubmed: 34161896 doi: 10.1016/j.jpsychires.2021.05.062
Liu L, Qiao Y, Shao Y, Yu SY, Zhang C, Zhang R, et al. Association of corticotropin-releasing hormone receptor-1 gene polymorphisms and personality traits with violent aggression in male adolescents. J Mol Neurosci. 2020;70:145–54.
pubmed: 31452059 doi: 10.1007/s12031-019-01396-8
Bryushkova L, Zai C, Chen S, Pappa I, Mileva V, Tiemeier H, et al. FKBP5 interacts with maltreatment in children with extreme, pervasive, and persistent aggression. Psychiatry Res. 2016;242:277–80.
pubmed: 27315459 doi: 10.1016/j.psychres.2015.09.052
Striepens N, Kendrick KM, Maier W, Hurlemann R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendocrinol. 2011;32:426–50.
pubmed: 21802441 doi: 10.1016/j.yfrne.2011.07.001
de Jong TR, Neumann ID. Oxytocin and aggression. Curr Top Behav Neurosci. 2018;35:175–92.
pubmed: 28864975 doi: 10.1007/7854_2017_13
Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322:900–4.
pubmed: 18988842 doi: 10.1126/science.1158668
Shao D, Zhang HH, Long ZT, Li J, Bai HY, Li JJ, et al. Effect of the interaction between oxytocin receptor gene polymorphism (rs53576) and stressful life events on aggression in Chinese Han adolescents. Psychoneuroendocrinology. 2018;96:35–41.
pubmed: 29890447 doi: 10.1016/j.psyneuen.2018.06.002
Glenn AL, Lochman JE, Dishion T, Powell NP, Boxmeyer C, Qu L. Oxytocin receptor gene variant interacts with intervention delivery format in predicting intervention outcomes for youth with conduct problems. Prev Sci. 2018;19:38–48.
pubmed: 28303421 pmcid: 5600646 doi: 10.1007/s11121-017-0777-1
Mick E, McGough J, Loo S, Doyle AE, Wozniak J, Wilens TE, et al. Genome-wide association study of the child behavior checklist dysregulation profile. J Am Acad Child Adolesc Psychiatry. 2011;50:807–.e808.
pubmed: 21784300 pmcid: 3143361 doi: 10.1016/j.jaac.2011.05.001
Hamshere ML, Langley K, Martin J, Agha SS, Stergiakouli E, Anney RJ, et al. High loading of polygenic risk for ADHD in children with comorbid aggression. Am J Psychiatry. 2013;170:909–16.
pubmed: 23599091 pmcid: 3935265 doi: 10.1176/appi.ajp.2013.12081129
van Donkelaar MMJ, Hoogman M, Pappa I, Tiemeier H, Buitelaar JK, Franke B, et al. Pleiotropic contribution of MECOM and AVPR1A to aggression and subcortical brain volumes. Front Behav Neurosci. 2018;12:61.
pubmed: 29666571 pmcid: 5891600 doi: 10.3389/fnbeh.2018.00061
Brevik EJ, van Donkelaar MM, Weber H, Sánchez-Mora C, Jacob C, Rivero O, et al. Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2016;171:733–47.
pubmed: 27021288 pmcid: 5071721 doi: 10.1002/ajmg.b.32434
Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.
pubmed: 32709988 pmcid: 7612115 doi: 10.1038/s41596-020-0353-1
Zhang Y, Cheng Y, Jiang W, Ye Y, Lu Q, Zhao H. Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics. Brief Bioinform. 2021;22:bbaa442.
pubmed: 33497438 pmcid: 8425307 doi: 10.1093/bib/bbaa442
Elam KK, Clifford S, Shaw DS, Wilson MN, Lemery-Chalfant K. Gene set enrichment analysis to create polygenic scores: a developmental examination of aggression. Transl Psychiatry. 2019;9:212.
pubmed: 31477688 pmcid: 6718657 doi: 10.1038/s41398-019-0513-7
Wang FL, Galán CA, Lemery-Chalfant K, Wilson MN, Shaw DS. Evidence for two genetically distinct pathways to co-occurring internalizing and externalizing problems in adolescence characterized by negative affectivity or behavioral inhibition. J Abnorm Psychol. 2020;129:633–45.
pubmed: 32463263 pmcid: 7415528 doi: 10.1037/abn0000525
Musci RJ, Bettencourt AF, Sisto D, Maher B, Masyn K, Ialongo NS. Violence exposure in an urban city: A GxE interaction with aggressive and impulsive behaviors. J Child Psychol Psychiatry. 2019;60:72–81.
pubmed: 30159911 doi: 10.1111/jcpp.12966
Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, et al. Genetic association study of childhood aggression across raters, instruments, and age. Transl Psychiatry. 2021;11:413.
pubmed: 34330890 pmcid: 8324785 doi: 10.1038/s41398-021-01480-x
Chao M, Li X, McGue M. The Causal Role of Alcohol Use in Adolescent Externalizing and Internalizing Problems: A Mendelian Randomization Study. Alcohol Clin Exp Res. 2017;41:1953–60.
pubmed: 28876462 doi: 10.1111/acer.13493
Achenbach TM, Rescorla LA, Manual for the ASEBA School-Age Forms & Profiles. 2001, Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.
Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA. 1984;81:258–61.
pubmed: 6582480 pmcid: 344651 doi: 10.1073/pnas.81.1.258
Crabb DW, Edenberg HJ, Bosron WF, Li TK. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989;83:314–6.
pubmed: 2562960 pmcid: 303676 doi: 10.1172/JCI113875
Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007;282:12940–50.
pubmed: 17327228 doi: 10.1074/jbc.M607959200
Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T, Yamaguchi S, et al. Confirmation of ALDH2 as a Major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8.
pubmed: 21372407 doi: 10.1253/circj.CJ-10-0774
Li D, Zhao H, Gelernter J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet. 2012;131:725–37.
Provençal N, Suderman MJ, Guillemin C, Vitaro F, Côté SM, Hallett M, et al. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One. 2014;9:e89839.
pubmed: 24691403 pmcid: 3972178 doi: 10.1371/journal.pone.0089839
Cecil CAM, Walton E, Jaffee SR, O’Connor T, Maughan B, Relton CL, et al. Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Dev Psychopathol. 2018;30:383–97.
pubmed: 28595673 doi: 10.1017/S095457941700092X
Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry. 2011;168:1041–9.
pubmed: 21890791 pmcid: 3222234 doi: 10.1176/appi.ajp.2011.11020191
Xiao R, Boehnke M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol. 2009;33:453–62.
pubmed: 19140131 pmcid: 2706290 doi: 10.1002/gepi.20398
Nakaoka H, Inoue I. Meta-analysis of genetic association studies: methodologies, between-study heterogeneity and winner’s curse. J Hum Genet. 2009;54:615–23.
pubmed: 19851339 doi: 10.1038/jhg.2009.95
Dickersin K, Min YI. Publication bias: the problem that won’t go away. Ann N. Y Acad Sci. 1993;703:135–46. pdiscussion 146-138
pubmed: 8192291 doi: 10.1111/j.1749-6632.1993.tb26343.x
Weeland J, Overbeek G, de Castro BO, Matthys W. Underlying mechanisms of gene-environment interactions in externalizing behavior: a systematic review and search for theoretical mechanisms. Clin Child Fam Psychol Rev. 2015;18:413–42.
pubmed: 26537239 pmcid: 4637001 doi: 10.1007/s10567-015-0196-4
Widom CS, Brzustowicz LM. MAOA and the “cycle of violence:” childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry. 2006;60:684–9.
pubmed: 16814261 doi: 10.1016/j.biopsych.2006.03.039
Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–8.
pubmed: 31217584 pmcid: 6785182 doi: 10.1038/s41586-019-1310-4
Tsuo K, Zhou W, Wang Y, Kanai M, Namba S, Gupta R, et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genom. 2022;2:100212.
pubmed: 36778051 pmcid: 9903683 doi: 10.1016/j.xgen.2022.100212
Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat Genet. 2022;54:1640–51.
pubmed: 36333501 pmcid: 10165422 doi: 10.1038/s41588-022-01213-w
Berkout OV, Young JN, Gross AM. Mean girls and bad boys: Recent research on gender differences in conduct disorder. Aggression Violent Behav. 2011;16:503–11.
doi: 10.1016/j.avb.2011.06.001
Bishop SA, Okagbue HI, Odukoya JA. Statistical analysis of childhood and early adolescent externalizing behaviors in a middle low income country. Heliyon. 2020;6:e03377.
pubmed: 32072060 pmcid: 7013197 doi: 10.1016/j.heliyon.2020.e03377
Kim-Cohen J, Arseneault L, Caspi A, Tomas MP, Taylor A, Moffitt TE. Validity of DSM-IV conduct disorder in 41/2-5-year-old children: a longitudinal epidemiological study. Am J Psychiatry. 2005;162:1108–17.
pubmed: 15930059 doi: 10.1176/appi.ajp.162.6.1108
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: a tale of mice and men. Prog Neurobiol. 2020;194:101875.
pubmed: 32574581 pmcid: 7609507 doi: 10.1016/j.pneurobio.2020.101875
Ziegler C, Domschke K. Epigenetic signature of MAOA and MAOB genes in mental disorders. J Neural Transm (Vienna). 2018;125:1581–8.
pubmed: 30242487 doi: 10.1007/s00702-018-1929-6
Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacol (Berl). 2014;231:1581–99.
doi: 10.1007/s00213-013-3415-z
Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci. 2012;13:18.
pubmed: 22336227 pmcid: 3315415 doi: 10.1186/1471-2202-13-18
Tunbridge EM, Weickert CS, Kleinman JE, Herman MM, Chen J, Kolachana BS, et al. Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cereb Cortex. 2007;17:1206–12.
pubmed: 16835293 doi: 10.1093/cercor/bhl032
Rajagopal VM, Duan J, Vilar-Ribo L, Grove J, Zayats T, Ramos-Quiroga JA, et al. Differences in the genetic architecture of common and rare variants in childhood, persistent and late-diagnosed attention-deficit hyperactivity disorder. Nat Genet. 2022;54:1117–24.
pubmed: 35927488 pmcid: 10028590 doi: 10.1038/s41588-022-01143-7
Jung B, Ahn K, Justice C, Norman L, Price J, Sudre G, et al. Rare copy number variants in males and females with childhood attention-deficit/hyperactivity disorder. Mol Psychiatry. 2023;28:1240–7.
pubmed: 36517639 doi: 10.1038/s41380-022-01906-y
Martin J, Tammimies K, Karlsson R, Lu Y, Larsson H, Lichtenstein P, et al. Copy number variation and neuropsychiatric problems in females and males in the general population. Am J Med Genet B Neuropsychiatr Genet. 2019;180:341–50.
pubmed: 30307693 doi: 10.1002/ajmg.b.32685
Vu TH, Coccaro EF, Eichler EE, Girirajan S. Genomic architecture of aggression: rare copy number variants in intermittent explosive disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:808–16.
pubmed: 21812102 doi: 10.1002/ajmg.b.31225
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet. 2023;32:2411–21.
pubmed: 37154571 pmcid: 10360394 doi: 10.1093/hmg/ddad074
Rovira P, Demontis D, Sanchez-Mora C, Zayats T, Klein M, Mota NR, et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2020;45:1617–26.
pubmed: 32279069 pmcid: 7419307 doi: 10.1038/s41386-020-0664-5
Jansen AG, Dieleman GC, Jansen PR, Verhulst FC, Posthuma D, Polderman TJC. Psychiatric polygenic risk scores as predictor for attention deficit/hyperactivity disorder and autism spectrum disorder in a clinical child and adolescent sample. Behav Genet. 2020;50:203–12.
pubmed: 31346826 doi: 10.1007/s10519-019-09965-8
Demontis D, Walters RK, Rajagopal VM, Waldman ID, Grove J, Als TD, et al. Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder. Nat Commun. 2021;12:576.
pubmed: 33495439 pmcid: 7835232 doi: 10.1038/s41467-020-20443-2
World Health Organization, Preventing youth violence: an overview of the evidence. 2015. p. 96.
Shleptsova VA, Malyuchenko NV, Kulikova MA, Timofeeva MA, Shchegolkova JV, Vedjakov AM, et al. Role ofrenin-angiotensin systemin the formation of emotional state in humans. Bull Exp Biol Med. 2008;145:391–4.
pubmed: 19110575 doi: 10.1007/s10517-008-0099-1
Kiive E, Kurrikoff T, Mäestu J, Harro J. Effect of alpha2A-adrenoceptor of alpha2A adrenoceptor C-1291G genotype and maltreatment on hyperactivity and inattention inadolescents. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:219–224.
pubmed: 19922756 doi: 10.1016/j.pnpbp.2009.11.011
Dick DM, Meyers JL, Latendresse SJ, Creemers HE, Lansford JE, Pettit GS, et al. CHRM2, parental monitoring, and adolescent externalizing behavior: evidence for gene-environment interaction. Psychol Sci. 2011;22:481–9.
pubmed: 21441226 doi: 10.1177/0956797611403318
Thibodeau EL, Cicchetti D, Rogosch FA. Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from acumulative dopaminergic gene index. Dev Psychopathol. 2015;27:1621–36.
pubmed: 26535948 pmcid: 4786073 doi: 10.1017/S095457941500098X
Beitchman JH, Zai CC, Muir K, Berall L, Nowrouzi B, Choi E, et al. Childhood aggression, callousunemotional traits and oxytocin genes. Eur Child Adolesc Psychiatry. 2012;21:125–32.
pubmed: 22294460 doi: 10.1007/s00787-012-0240-6
Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012;11:545–51.
pubmed: 22372486 doi: 10.1111/j.1601-183X.2012.00776.x
Villafuerte S, Trucco EM, Heitzeg MM, Burmeister M, Zucker RA. Genetic variation in GABRA2 moderates peer influence on externalizing behavior in adolescents. Brain Behav. 2014;4:833–40.
pubmed: 25365806 pmcid: 4212110 doi: 10.1002/brb3.291
Salvatore JE, Meyers JL, Yan J, Aliev F, Lansford JE, Pettit GS, et al. Intergenerational continuity in parents’ and adolescents’ externalizing problems: The role of life events and their interaction with GABRA2. J Abnorm Psychol. 2015;124:709–28.
pubmed: 26075969 pmcid: 4573794 doi: 10.1037/abn0000066
van Goozen SH, Langley K, Northover C, Hubble K, Rubia K, et al. Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD. J Child Psychol Psychiatry. 2016;57:472–80.
pubmed: 26395975 doi: 10.1111/jcpp.12464
Trucco EM, Villafuerte S, Heitzeg MM, Burmeister M, Zucker RA. Susceptibility effects of GABA receptor subunit alpha-2 (GABRA2) variants and parental monitoring on externalizing behavior trajectories: Risk and protection conveyed by the minor allele. Dev Psychopathol. 2016;28:15–26.
pubmed: 25797587 doi: 10.1017/S0954579415000255
Musci RJ, Bettencourt AF, Sisto D, Maher B, Uhl G, Ialongo N, et al. Evaluating the genetic susceptibility to peer reported bullying behaviors. Psychiatry Res. 2018;263:193–8.
pubmed: 29573659 pmcid: 6085882 doi: 10.1016/j.psychres.2018.03.016
Hirata Y, Zai CC, Nowrouzi B, Shaikh SA, Kennedy JL, Beitchman JH. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children. Psychiatr Genet. 2016;26:48–51.
pubmed: 26513615 doi: 10.1097/YPG.0000000000000108
Gillentine MA, White JJ, Grochowski CM, Lupski JR, Schaaf CP, Calarge CA. CHRNA7 Deletions are Enriched in Risperidone-Treated Children and Adolescents. J Child Adolesc Psychopharmacol. 2017;27:908–15.
pubmed: 28817303 pmcid: 5725633 doi: 10.1089/cap.2017.0068
Kiive E, Laas K, Vaht M, Veidebaum T, Harro J. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 Aallele. Eur Neuropsychopharmacol. 2017;27:816–27.
pubmed: 28237505 doi: 10.1016/j.euroneuro.2017.02.003
Liu L, Cheng J, Li H, Su Y, Sun L, Yang L, et al. Association of Y-linked variants with impulsivity and aggression in boys with attention deficit/hyperactivity disorder of Chinese Handescent. Psychiatry Res. 2017;252:185–7.
pubmed: 28284086 doi: 10.1016/j.psychres.2017.02.055
DiLalla LF, DiLalla DL. Gene-Environment Correlations Affecting Children’s Early Rule-Breaking and Aggressive Play Behaviors. Twin Res Hum Genet. 2018;21:285–8.
pubmed: 30027862 doi: 10.1017/thg.2018.30
Womack SR, Clifford S, Wilson MN, Shaw DS, Lemery-Chalfant K. Genetic Moderation of the Association Between Early Family Instability and Trajectories of Aggressive Behaviors from Middle Childhood to Adolescence. Behav Genet. 2021;51:476–91.
pubmed: 34085180 doi: 10.1007/s10519-021-10069-5
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, et al. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology. 2019;104:80–88.
pubmed: 30818255 doi: 10.1016/j.psyneuen.2019.02.020
Vaht M. Variation rs6971 in the translocator protein gene (TSPO) is associated with aggressiveness and impulsivity but not with anxiety in a population representative sample of young adults. J Genet Psychol: Res Theory Hum Develop. 2021;182:149–62.
doi: 10.1080/00221325.2021.1896470

Auteurs

Emiko Koyama (E)

Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan.

Tuana Kant (T)

Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.

Atsushi Takata (A)

Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan.

James L Kennedy (JL)

Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
Institute of Medical Science, University of Toronto, Toronto, ON, Canada.

Clement C Zai (CC)

Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. clement.zai@camh.ca.
Department of Psychiatry, University of Toronto, Toronto, ON, Canada. clement.zai@camh.ca.
Institute of Medical Science, University of Toronto, Toronto, ON, Canada. clement.zai@camh.ca.
Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. clement.zai@camh.ca.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. clement.zai@camh.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH