Genetics of child aggression, a systematic review.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
17
03
2023
accepted:
11
03
2024
revised:
07
03
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Identifiants
pubmed: 38862490
doi: 10.1038/s41398-024-02870-7
pii: 10.1038/s41398-024-02870-7
doi:
Substances chimiques
Catechol O-Methyltransferase
EC 2.1.1.6
COMT protein, human
EC 2.1.1.6
DRD4 protein, human
0
Monoamine Oxidase
EC 1.4.3.4
Receptors, Dopamine D4
137750-34-6
Types de publication
Journal Article
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
252Informations de copyright
© 2024. The Author(s).
Références
Pikard J, Roberts N, Groll D. Pediatric referrals for urgent psychiatric consultation: clinical characteristics, diagnoses and outcome of 4 to 12 year old children. J Can Acad Child Adolesc Psychiatry. 2018;27:245–51.
pubmed: 30487940
pmcid: 6254263
World Health Organization. Youth violence. 2020 May 10, 2022]; Available from: https://www.who.int/news-room/fact-sheets/detail/youth-violence .
Centers for Disease Control and Prevention. Preventing youth violence. 2022 April 14, 2022]; Available from: https://www.cdc.gov/violenceprevention/youthviolence/fastfact.html .
Anderson CA, Bushman BJ. Human aggression. Annu Rev Psychol. 2002;53:27–51.
pubmed: 11752478
doi: 10.1146/annurev.psych.53.100901.135231
Egger HL, Angold A. Common emotional and behavioral disorders in preschool children: presentation, nosology, and epidemiology. J Child Psychol Psychiatry. 2006;47:313–37.
pubmed: 16492262
doi: 10.1111/j.1469-7610.2006.01618.x
Bierman KL, Coie J, Dodge K, Greenberg M, Lochman J, McMohan R, et al. School outcomes of aggressive-disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program. Aggress Behav. 2013;39:114–30.
pubmed: 23386568
doi: 10.1002/ab.21467
Colman I, Murray J, Abbott RA, Maughan B, Kuh D, Croudace TJ, et al. Outcomes of conduct problems in adolescence: 40 year follow-up of national cohort. BMJ. 2009;338:a2981.
pubmed: 19131382
pmcid: 2615547
doi: 10.1136/bmj.a2981
Moffitt TE, Caspi A, Harrington H, Milne BJ. Males on the life-course-persistent and adolescence-limited antisocial pathways: follow-up at age 26 years. Dev Psychopathol. 2002;14:179–207.
pubmed: 11893092
doi: 10.1017/S0954579402001104
Pedersen S, Vitaro F, Barker ED, Borge AI. The timing of middle-childhood peer rejection and friendship: linking early behavior to early-adolescent adjustment. Child Dev. 2007;78:1037–51.
pubmed: 17650124
doi: 10.1111/j.1467-8624.2007.01051.x
Foster EM, Jones DE. The high costs of aggression: public expenditures resulting from conduct disorder. Am J Public Health. 2005;95:1767–72.
pubmed: 16131639
pmcid: 1449434
doi: 10.2105/AJPH.2004.061424
Zhang T, Hoddenbagh J, The Costs of the Youth Criminal Justice System 2010. 2013, Department of Justice Canada.
Campbell SB. Behavior problems in preschool children: a review of recent research. J Child Psychol Psychiatry. 1995;36:113–49.
pubmed: 7714027
doi: 10.1111/j.1469-7610.1995.tb01657.x
Statistics Canada. Browse our infographics by subject. 2014 May 12, 2022]; Available from: https://www150.statcan.gc.ca/n1/pub/11-627-m/index-eng.htm .
Stemmler M, Losel F. Different patterns of boys’ externalizing behavior and their relation to risk factors: a longitudinal study of preschool children. Bull Soc Sci Med Gd Duche Luxemb. 2010;Spec No 1:53–67.
Wrangham RW. Two types of aggression in human evolution. Proc Natl Acad Sci USA. 2018;115:245–53.
pubmed: 29279379
doi: 10.1073/pnas.1713611115
Yamasaki K, Nishida N. The relationship between three types of aggression and peer relations in elementary school children. Int J Psychol. 2009;44:179–86.
pubmed: 22029493
doi: 10.1080/00207590701656770
Sakai A, Yamasaki K. [Development of a proactive and reactive aggression questionnaire for elementary school children]. Shinrigaku Kenkyu. 2004;75:254–61.
pubmed: 15745072
doi: 10.4992/jjpsy.75.254
Blair RJ, Leibenluft E, Pine DS. Conduct disorder and callous-unemotional traits in youth. N. Engl J Med. 2014;371:2207–16.
pubmed: 25470696
pmcid: 6312699
doi: 10.1056/NEJMra1315612
Frick PJ, Kimonis ER, Dandreaux DM, Farell JM. The 4 year stability of psychopathic traits in non-referred youth. Behav Sci Law. 2003;21:713–36.
pubmed: 14696028
doi: 10.1002/bsl.568
Nock MK, Kazdin AE, Hiripi E, Kessler RC. Lifetime prevalence, correlates, and persistence of oppositional defiant disorder: results from the National Comorbidity Survey Replication. J Child Psychol Psychiatry. 2007;48:703–13.
pubmed: 17593151
doi: 10.1111/j.1469-7610.2007.01733.x
Burke JD, Loeber R, Lahey BB, Rathouz PJ. Developmental transitions among affective and behavioral disorders in adolescent boys. J Child Psychol Psychiatry. 2005;46:1200–10.
pubmed: 16238667
doi: 10.1111/j.1469-7610.2005.00422.x
Burt SA. Rethinking environmental contributions to child and adolescent psychopathology: a meta-analysis of shared environmental influences. Psychol Bull. 2009;135:608–37.
pubmed: 19586164
doi: 10.1037/a0015702
Tuvblad C, Baker LA. Human aggression across the lifespan: genetic propensities and environmental moderators. Adv Genet. 2011;75:171–214.
pubmed: 22078481
doi: 10.1016/B978-0-12-380858-5.00007-1
Jarvik LF, Klodin V, Matsuyama SS. Human aggression and the extra Y chromosome. Fact or fantasy? Am Psychol. 1973;28:674–82.
pubmed: 4727279
doi: 10.1037/h0035758
Plomin R, Nitz K, Rowe DC, Behavioral genetics and aggressive behavior in childhood, in Handbook of developmental psychopathology. 1990, Plenum Press. p. 119-33.
Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262:578–80.
pubmed: 8211186
doi: 10.1126/science.8211186
Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet. 1998;103:273–9.
pubmed: 9799080
doi: 10.1007/s004390050816
Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, et al. Role of genotype in the cycle of violence in maltreated children. Science. 2002;297:851–4.
pubmed: 12161658
doi: 10.1126/science.1072290
Odintsova VV, Roetman PJ, Ip HF, Pool R, Van der Laan CM, Tona KD, et al. Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool. Psychiatr Genet. 2019;29:170–90.
pubmed: 31464998
doi: 10.1097/YPG.0000000000000239
Mick E, McGough J, Deutsch CK, Frazier JA, Kennedy D, Goldberg RJ. Genome-wide association study of proneness to anger. PLoS One. 2014;9:e87257.
pubmed: 24489884
pmcid: 3905014
doi: 10.1371/journal.pone.0087257
van der Laan CM, Morosoli-Garcia JJ, van de Weijer SGA, Colodro-Conde L, Consortium A, Lupton MK, et al. Continuity of genetic risk for aggressive behavior across the life-course. Behav Genet. 2021;51:592–606.
pubmed: 34390460
pmcid: 8390412
doi: 10.1007/s10519-021-10076-6
Bonvicini C, Faraone SV, Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry. 2018;19:80–100.
pubmed: 28097908
doi: 10.1080/15622975.2017.1282175
Anholt RR, Mackay TF. Genetics of aggression. Annu Rev Genet. 2012;46:145–64.
pubmed: 22934647
doi: 10.1146/annurev-genet-110711-155514
Twitchell GR, Hanna GL, Cook EH, Stoltenberg SF, Fitzgerald H, et al. Serotonin transporter promoter polymorphism genotype is associated with behavioral disinhibition and negative affect in children of alcoholics. Alcohol Clin Exp Res. 2001;25:953–9.
pubmed: 11505018
doi: 10.1111/j.1530-0277.2001.tb02302.x
Pappa I, St Pourcain B, Benke K, Cavadino A, Hakulinen C, Nivard MG, et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet. 2016;171:562–72.
pubmed: 26087016
doi: 10.1002/ajmg.b.32333
Jamnik MR, DiLalla LF. A multimethodological study of preschoolers’ preferences for aggressive television and video games. J Genet Psychol. 2018;179:156–69.
pubmed: 29672232
doi: 10.1080/00221325.2018.1454883
Achterberg M, van Duijvenvoorde ACK, van der Meulen M, Bakermans-Kranenburg MJ, Crone EA. Heritability of aggression following social evaluation in middle childhood: an fMRI study. Hum Brain Mapp. 2018;39:2828–41.
pubmed: 29528161
pmcid: 6055731
doi: 10.1002/hbm.24043
Feinberg ME, Button TM, Neiderhiser JM, Reiss D, Hetherington EM. Parenting and adolescent antisocial behavior and depression: evidence of genotype x parenting environment interaction. Arch Gen Psychiatry. 2007;64:457–65.
pubmed: 17404122
doi: 10.1001/archpsyc.64.4.457
Slawinski BL, Klump KL, Burt SA. The etiology of social aggression: a nuclear twin family study. Psychol Med. 2019;49:162–9.
pubmed: 29607796
doi: 10.1017/S0033291718000697
Orri M, Geoffroy MC, Turecki G, Feng B, Brendgen M, Vitaro F, et al. Contribution of genes and environment to the longitudinal association between childhood impulsive-aggression and suicidality in adolescence. J Child Psychol Psychiatry. 2020;61:711–20.
pubmed: 31782164
doi: 10.1111/jcpp.13163
Lacourse E, Boivin M, Brendgen M, Petitclerc A, Girard A, Vitaro F, et al. A longitudinal twin study of physical aggression during early childhood: evidence for a developmentally dynamic genome. Psychol Med. 2014;44:2617–27.
pubmed: 24443874
doi: 10.1017/S0033291713003218
Van Hulle CA, Waldman I, Lahey BB. Sex differences in the genetic and environmental influences on self-reported non-aggressive and aggressive conduct disorder symptoms in early and middle adolescence. Behav Genet. 2018;48:271–82.
pubmed: 29948512
pmcid: 6051422
doi: 10.1007/s10519-018-9907-1
Lawson DC, Turic D, Langley K, Pay HM, Govan CF, Norton N, et al. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2003;116B:84–89.
pubmed: 12497620
doi: 10.1002/ajmg.b.10002
Ma R, Jia H, Yi F, Ming Q, Wang X, Gao Y, et al. Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents. Neurosci Lett. 2016;610:144–9.
pubmed: 26562313
doi: 10.1016/j.neulet.2015.11.009
Beitchman JH, Mik HM, Ehtesham S, Douglas L, Kennedy JL. MAOA and persistent, pervasive childhood aggression. Mol Psychiatry. 2004;9:546–7.
pubmed: 15024395
doi: 10.1038/sj.mp.4001492
Pingault JB, Cote SM, Booij L, Ouellet-Mohn I, Castellanos-Ryan N, Vitaro F, et al. Age-dependent effect of the MAOA gene on childhood physical aggression. Mol Psychiatry. 2013;18:1151–2.
pubmed: 23247077
doi: 10.1038/mp.2012.173
Kant T, Koyama E, Zai CC, Beitchman JH, Kennedy JL. Association of the MAOA-uVNTR polymorphism with psychopathic traits may change from childhood to adolescence. Eur Arch Psychiatry Clin Neurosci. 2022;272:1517–21.
pubmed: 35038001
doi: 10.1007/s00406-021-01370-9
Kiive E, Laas K, Akkermann K, Comasco E, Oreland L, Veidebaum T, et al. Mitigating aggressiveness through education? The monoamine oxidase A genotype and mental health in general population. Acta Neuropsychiatr. 2014;26:19–28.
pubmed: 25142096
doi: 10.1017/neu.2013.34
Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, et al. MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry. 2009;65:417–24.
pubmed: 18996506
doi: 10.1016/j.biopsych.2008.09.013
Zhang Y, Ming Q, Wang X, Yao S. The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents. Psychiatr Genet. 2016;26:117–23.
pubmed: 26945458
doi: 10.1097/YPG.0000000000000125
Zhang Y, Ming Q-S, Yi J-Y, Wang X, Chai Q-L, Yao S-Q. Gene-gene-environment interactions of serotonin transporter, monoamine oxidase a and childhood maltreatment predict aggressive behavior in Chinese adolescents. Front Behav Neurosci. 2017;11:17.
pubmed: 28203149
pmcid: 5285338
doi: 10.3389/fnbeh.2017.00017
Edwards AC, Dodge KA, Latendresse SJ, Lansford JE, Bates JE, Pettit GS, et al. MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry. 2010;51:679–87.
pubmed: 19951362
doi: 10.1111/j.1469-7610.2009.02196.x
Pickles A, Hill J, Breen G, Quinn J, Abbott K, Jones H, et al. Evidence for interplay between genes and parenting on infant temperament in the first year of life: monoamine oxidase A polymorphism moderates effects of maternal sensitivity on infant anger proneness. J Child Psychol Psychiatry. 2013;54:1308–17.
pubmed: 23738520
doi: 10.1111/jcpp.12081
Zhang W, Cao C, Wang M, Ji L, Cao Y. Monoamine oxidase A (MAOA) and catechol-O-methyltransferase (COMT) gene polymorphisms interact with maternal parenting in association with adolescent reactive aggression but not proactive aggression: evidence of differential susceptibility. J Youth Adolesc. 2016;45:812–29.
pubmed: 26932718
doi: 10.1007/s10964-016-0442-1
Galán CA, Choe DE, Forbes EE, Shaw DS. The interaction between monoamine oxidase A and punitive discipline in the development of antisocial behavior: Mediation by maladaptive social information processing. Dev Psychopathol. 2017;29:1235–52.
pubmed: 28031080
doi: 10.1017/S0954579416001279
Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci. 2008;28:8709–23.
pubmed: 18753372
pmcid: 2561993
doi: 10.1523/JNEUROSCI.2077-08.2008
Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998;95:9991–6.
pubmed: 9707588
pmcid: 21449
doi: 10.1073/pnas.95.17.9991
Kuperman S, Kramer J, Loney J. Enzyme activity and behavior in hyperactive children grown up. Biol Psychiatry. 1988;24:375–83.
pubmed: 3408755
doi: 10.1016/0006-3223(88)90173-4
Qayyum A, Zai CC, Hirata Y, Tiwari AK, Cheema S, Nowrouzi B, et al. The role of the catechol-o-methyltransferase (COMT) GeneVal158Met in aggressive behavior, a review of genetic studies. Curr Neuropharmacol. 2015;13:802–14.
pubmed: 26630958
pmcid: 4759319
doi: 10.2174/1570159X13666150612225836
Caspi A, Langley K, Milne B, Moffitt TE, O’Donovan M, Owen MJ, et al. A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2008;65:203–10.
pubmed: 18250258
doi: 10.1001/archgenpsychiatry.2007.24
Albaugh MD, Harder VS, Althoff RR, Rettew DC, Ehli EA, Lengyel-Nelson T, et al. COMT Val158Met genotype as a risk factor for problem behaviors in youth. J Am Acad Child Adolesc Psychiatry. 2010;49:841–9.
pubmed: 20643317
pmcid: 3141335
doi: 10.1016/j.jaac.2010.05.015
Bearden CE, Jawad AF, Lynch DR, Monterossso JR, Sokol S, McDonald-McGinn DM, et al. Effects of COMT genotype on behavioral symptomatology in the 22q11.2 deletion syndrome. Child Neuropsychol. 2005;11:109–17.
pubmed: 15846854
pmcid: 2810976
doi: 10.1080/09297040590911239
Hirata Y, Zai CC, Nowrouzi B, Beitchman JH, Kennedy JL. Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children. Aggress Behav. 2013;39:45–51.
pubmed: 22972758
doi: 10.1002/ab.21448
Wang M, Li H, Deater-Deckard K, Zhang W. Interacting effect of catechol-O-methyltransferase (COMT) and monoamine oxidase a (MAOA) gene polymorphisms, and stressful life events on aggressive behavior in Chinese male adolescents. Front Psychol. 2018;9:1079.
pubmed: 30018578
pmcid: 6037980
doi: 10.3389/fpsyg.2018.01079
Hygen BW, Guzey IC, Belsky J, Berg-Nielsen TS, Wichstrøm L. Catechol-O-methyltransferase Val158Met genotype moderates the effect of disorganized attachment on social development in young children. Dev Psychopathol. 2014;26:947–61.
pubmed: 24914507
doi: 10.1017/S0954579414000492
Hygen BW, Belsky J, Stenseng F, Lydersen S, Guzey IC, Wichstrøm L. Child exposure to serious life events, COMT, and aggression: Testing differential susceptibility theory. Dev Psychol. 2015;51:1098–104.
pubmed: 26053146
doi: 10.1037/dev0000020
Kant T, Koyama E, Zai CC, Beitchman JH, Kennedy JL. COMT Val/Met and psychopathic traits in children and adolescents: a systematic review and new evidence of a developmental trajectory toward psychopathy. Int J Mol Sci. 2022;23:1782.
pubmed: 35163702
pmcid: 8836546
doi: 10.3390/ijms23031782
Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet. 1993;2:767–73.
pubmed: 8353495
doi: 10.1093/hmg/2.6.767
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci. 2010;67:1971–86.
pubmed: 20165900
pmcid: 11115718
doi: 10.1007/s00018-010-0293-y
Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, et al. Multiple dopamine D4 receptor variants in the human population. Nature. 1992;358:149–52.
pubmed: 1319557
doi: 10.1038/358149a0
Asghari V, Schoots O, van Kats S, Ohara K, Jovanovic V, Guan HC, et al. Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol Pharm. 1994;46:364–73.
Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem. 1995;65:1157–65.
pubmed: 7643093
doi: 10.1046/j.1471-4159.1995.65031157.x
Schoots O, Van Tol HH. The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J. 2003;3:343–8.
pubmed: 14581929
doi: 10.1038/sj.tpj.6500208
Van Craenenbroeck K, Clark SD, Cox MJ, Oak JN, Liu F, Van Tol HH. Folding efficiency is rate-limiting in dopamine D4 receptor biogenesis. J Biol Chem. 2005;280:19350–7.
pubmed: 15755724
doi: 10.1074/jbc.M414043200
Van Craenenbroeck K, Borroto-Escuela DO, Romero-Fernandez W, Skieterska K, Rondou P, Lintermans B, et al. Dopamine D4 receptor oligomerization-contribution to receptor biogenesis. FEBS J. 2011;278:1333–44.
pubmed: 21320289
doi: 10.1111/j.1742-4658.2011.08052.x
Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, et al. Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun. 2011;404:928–34.
pubmed: 21184734
doi: 10.1016/j.bbrc.2010.12.083
Nobile M, Giorda R, Marino C, Carlet O, Pastore V, Vanzin L, et al. Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region polymorphisms to externalization in preadolescence. Dev Psychopathol. 2007;19:1147–60.
pubmed: 17931440
doi: 10.1017/S0954579407000594
Hohmann S, Becker K, Fellinger J, Banaschewski T, Schmidt MH, Esser G, et al. Evidence for epistasis between the 5-HTTLPR and the dopamine D4 receptor polymorphisms in externalizing behavior among 15-year-olds. J Neural Transm (Vienna). 2009;116:1621–9.
pubmed: 19696961
doi: 10.1007/s00702-009-0290-1
Farbiash T, Berger A, Atzaba-Poria N, Auerbach JG. Prediction of preschool aggression from DRD4 risk, parental ADHD symptoms, and home chaos. J Abnorm Child Psychol. 2014;42:489–99.
pubmed: 23929006
doi: 10.1007/s10802-013-9791-3
Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJS, Banaschewski T, et al. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav Brain Funct. 2008;4:48.
pubmed: 18937842
pmcid: 2577091
doi: 10.1186/1744-9081-4-48
DeYoung CG, Peterson JB, Séguin JR, Mejia JM, Pihl RO, Beitchman JH, et al. The dopamine D4 receptor gene and moderation of the association between externalizing behavior and IQ. Arch Gen Psychiatry. 2006;63:1410–6.
pubmed: 17146015
pmcid: 3283582
doi: 10.1001/archpsyc.63.12.1410
Zai CC, Ehtesham S, Choi E, Nowrouzi B, de Luca V, Stankovich L, et al. Dopaminergic system genes in childhood aggression: possible role for DRD2. World J Biol Psychiatry. 2012;13:65–74.
pubmed: 21247255
doi: 10.3109/15622975.2010.543431
Bakermans-Kranenburg MJ, van Ijzendoorn MH. Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Dev Psychobiol. 2006;48:406–9.
pubmed: 16770765
doi: 10.1002/dev.20152
Zohsel K, Buchmann AF, Blomeyer D, Hohm E, Schmidt MH, Esser G, et al. Mothers’ prenatal stress and their children’s antisocial outcomes-a moderating role for the dopamine D4 receptor (DRD4) gene. J Child Psychol Psychiatry. 2014;55:69–76.
pubmed: 24102377
doi: 10.1111/jcpp.12138
DiLalla LF, Elam KK, Smolen A. Genetic and gene-environment interaction effects on preschoolers’ social behaviors. Dev Psychobiol. 2009;51:451–64.
pubmed: 19582792
doi: 10.1002/dev.20384
Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, et al. Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am J Psychiatry. 2006;163:1103–5.
pubmed: 16741214
doi: 10.1176/ajp.2006.163.6.1103
Haberstick BC, Smolen A, Hewitt JK. Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry. 2006;59:836–43.
pubmed: 16412987
doi: 10.1016/j.biopsych.2005.10.008
Sysoeva OV, Maluchenko NV, Timofeeva MA, Portnova GV, Kulikova MA, Tonevitsky AG, et al. Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups. Int J Psychophysiol. 2009;72:173–8.
pubmed: 19121342
doi: 10.1016/j.ijpsycho.2008.12.005
Letourneau NL, de Koning APJ, Sekhon B, Ntanda HN, Kobor M, Deane AJ, et al. Parenting Interacts With Plasticity Genes in Predicting Behavioral Outcomes in Preschoolers. Can J Nurs Res. 2020;52:290–307.
pubmed: 31403319
doi: 10.1177/0844562119863612
Cadoret RJ, Langbehn D, Caspers K, Troughton EP, Yucuis R, Sandhu HK, et al. Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr Psychiatry. 2003;44:88–101.
pubmed: 12658617
doi: 10.1053/comp.2003.50018
Laas K, Kiive E, Mäestu J, Vaht M, Veidebaum T, Harro J. Nice guys: Homozygocity for the TPH2 -703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. J Affect Disord. 2017;215:230–6.
pubmed: 28342337
doi: 10.1016/j.jad.2017.03.045
Nedic Erjavec G, Tudor L, Nikolac Perkovic M, Podobnik J, Dodig Curkovic K, Curkovic M, et al. Serotonin 5-HT(2A) receptor polymorphisms are associated with irritability and aggression in conduct disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2022;117:110542.
pubmed: 35257831
doi: 10.1016/j.pnpbp.2022.110542
Davidge KM, Atkinson L, Douglas L, Lee V, Shapiro S, Kennedy JL, et al. Association of the serotonin transporter and 5HT1Dbeta receptor genes with extreme, persistent and pervasive aggressive behaviour in children. Psychiatr Genet. 2004;14:143–6.
pubmed: 15318027
doi: 10.1097/00041444-200409000-00004
Hakulinen C, Jokela M, Hintsanen M, Merjonen P, Pulkki-Råback L, Seppälä I, et al. Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study. J Behav Med. 2013;36:583–90.
pubmed: 22945537
doi: 10.1007/s10865-012-9452-y
Sener EF, Taheri S, Sahin MC, Bayramov KK, Marasli MK, Zararsiz G, et al. Altered global mRNA expressions of pain and aggression related genes in the blood of children with autism spectrum disorders. J Mol Neurosci. 2019;67:89–96.
pubmed: 30519864
doi: 10.1007/s12031-018-1213-0
Paes LA, Torre OHD, Henriques TB, de Mello MP, Celeri E, Dalgalarrondo P, et al. Association between serotonin 2C receptor gene (HTR2C) polymorphisms and psychopathological symptoms in children and adolescents. Braz J Med Biol Res. 2018;51:e7252.
pubmed: 29924134
pmcid: 6010321
doi: 10.1590/1414-431x20187252
Wang FL, Chassin L, Bates JE, Dick D, Lansford JE, Pettit GS, et al. Serotonin functioning and adolescents’ alcohol use: A genetically informed study examining mechanisms of risk. Dev Psychopathol. 2018;30:213–33.
pubmed: 28534453
doi: 10.1017/S095457941700058X
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic-pituitary-adrenal axis activity during development and the emergence of aggression-Animal studies. Neurosci Biobehav Rev. 2018;91:138–52.
pubmed: 27751733
doi: 10.1016/j.neubiorev.2016.10.008
Zai CC, Muir KE, Nowrouzi B, Shaikh SA, Choi E, Berall L, et al. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012;200:784–8.
pubmed: 22910476
doi: 10.1016/j.psychres.2012.07.031
Malik AI, Zai CC, Berall L, Abu Z, Din F, Nowrouzi B, et al. The role of genetic variants in genes regulating the oxytocin-vasopressin neurohumoral system in childhood-onset aggression. Psychiatr Genet. 2014;24:201–10.
pubmed: 24871896
doi: 10.1097/YPG.0000000000000044
Vollebregt O, Koyama E, Zai CC, Shaikh SA, Lisoway AJ, Kennedy JL, et al. Evidence for association of vasopressin receptor 1A promoter region repeat with childhood onset aggression. J Psychiatr Res. 2021;140:522–8.
pubmed: 34161896
doi: 10.1016/j.jpsychires.2021.05.062
Liu L, Qiao Y, Shao Y, Yu SY, Zhang C, Zhang R, et al. Association of corticotropin-releasing hormone receptor-1 gene polymorphisms and personality traits with violent aggression in male adolescents. J Mol Neurosci. 2020;70:145–54.
pubmed: 31452059
doi: 10.1007/s12031-019-01396-8
Bryushkova L, Zai C, Chen S, Pappa I, Mileva V, Tiemeier H, et al. FKBP5 interacts with maltreatment in children with extreme, pervasive, and persistent aggression. Psychiatry Res. 2016;242:277–80.
pubmed: 27315459
doi: 10.1016/j.psychres.2015.09.052
Striepens N, Kendrick KM, Maier W, Hurlemann R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendocrinol. 2011;32:426–50.
pubmed: 21802441
doi: 10.1016/j.yfrne.2011.07.001
de Jong TR, Neumann ID. Oxytocin and aggression. Curr Top Behav Neurosci. 2018;35:175–92.
pubmed: 28864975
doi: 10.1007/7854_2017_13
Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322:900–4.
pubmed: 18988842
doi: 10.1126/science.1158668
Shao D, Zhang HH, Long ZT, Li J, Bai HY, Li JJ, et al. Effect of the interaction between oxytocin receptor gene polymorphism (rs53576) and stressful life events on aggression in Chinese Han adolescents. Psychoneuroendocrinology. 2018;96:35–41.
pubmed: 29890447
doi: 10.1016/j.psyneuen.2018.06.002
Glenn AL, Lochman JE, Dishion T, Powell NP, Boxmeyer C, Qu L. Oxytocin receptor gene variant interacts with intervention delivery format in predicting intervention outcomes for youth with conduct problems. Prev Sci. 2018;19:38–48.
pubmed: 28303421
pmcid: 5600646
doi: 10.1007/s11121-017-0777-1
Mick E, McGough J, Loo S, Doyle AE, Wozniak J, Wilens TE, et al. Genome-wide association study of the child behavior checklist dysregulation profile. J Am Acad Child Adolesc Psychiatry. 2011;50:807–.e808.
pubmed: 21784300
pmcid: 3143361
doi: 10.1016/j.jaac.2011.05.001
Hamshere ML, Langley K, Martin J, Agha SS, Stergiakouli E, Anney RJ, et al. High loading of polygenic risk for ADHD in children with comorbid aggression. Am J Psychiatry. 2013;170:909–16.
pubmed: 23599091
pmcid: 3935265
doi: 10.1176/appi.ajp.2013.12081129
van Donkelaar MMJ, Hoogman M, Pappa I, Tiemeier H, Buitelaar JK, Franke B, et al. Pleiotropic contribution of MECOM and AVPR1A to aggression and subcortical brain volumes. Front Behav Neurosci. 2018;12:61.
pubmed: 29666571
pmcid: 5891600
doi: 10.3389/fnbeh.2018.00061
Brevik EJ, van Donkelaar MM, Weber H, Sánchez-Mora C, Jacob C, Rivero O, et al. Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2016;171:733–47.
pubmed: 27021288
pmcid: 5071721
doi: 10.1002/ajmg.b.32434
Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.
pubmed: 32709988
pmcid: 7612115
doi: 10.1038/s41596-020-0353-1
Zhang Y, Cheng Y, Jiang W, Ye Y, Lu Q, Zhao H. Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics. Brief Bioinform. 2021;22:bbaa442.
pubmed: 33497438
pmcid: 8425307
doi: 10.1093/bib/bbaa442
Elam KK, Clifford S, Shaw DS, Wilson MN, Lemery-Chalfant K. Gene set enrichment analysis to create polygenic scores: a developmental examination of aggression. Transl Psychiatry. 2019;9:212.
pubmed: 31477688
pmcid: 6718657
doi: 10.1038/s41398-019-0513-7
Wang FL, Galán CA, Lemery-Chalfant K, Wilson MN, Shaw DS. Evidence for two genetically distinct pathways to co-occurring internalizing and externalizing problems in adolescence characterized by negative affectivity or behavioral inhibition. J Abnorm Psychol. 2020;129:633–45.
pubmed: 32463263
pmcid: 7415528
doi: 10.1037/abn0000525
Musci RJ, Bettencourt AF, Sisto D, Maher B, Masyn K, Ialongo NS. Violence exposure in an urban city: A GxE interaction with aggressive and impulsive behaviors. J Child Psychol Psychiatry. 2019;60:72–81.
pubmed: 30159911
doi: 10.1111/jcpp.12966
Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, et al. Genetic association study of childhood aggression across raters, instruments, and age. Transl Psychiatry. 2021;11:413.
pubmed: 34330890
pmcid: 8324785
doi: 10.1038/s41398-021-01480-x
Chao M, Li X, McGue M. The Causal Role of Alcohol Use in Adolescent Externalizing and Internalizing Problems: A Mendelian Randomization Study. Alcohol Clin Exp Res. 2017;41:1953–60.
pubmed: 28876462
doi: 10.1111/acer.13493
Achenbach TM, Rescorla LA, Manual for the ASEBA School-Age Forms & Profiles. 2001, Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.
Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA. 1984;81:258–61.
pubmed: 6582480
pmcid: 344651
doi: 10.1073/pnas.81.1.258
Crabb DW, Edenberg HJ, Bosron WF, Li TK. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989;83:314–6.
pubmed: 2562960
pmcid: 303676
doi: 10.1172/JCI113875
Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007;282:12940–50.
pubmed: 17327228
doi: 10.1074/jbc.M607959200
Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T, Yamaguchi S, et al. Confirmation of ALDH2 as a Major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8.
pubmed: 21372407
doi: 10.1253/circj.CJ-10-0774
Li D, Zhao H, Gelernter J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet. 2012;131:725–37.
Provençal N, Suderman MJ, Guillemin C, Vitaro F, Côté SM, Hallett M, et al. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One. 2014;9:e89839.
pubmed: 24691403
pmcid: 3972178
doi: 10.1371/journal.pone.0089839
Cecil CAM, Walton E, Jaffee SR, O’Connor T, Maughan B, Relton CL, et al. Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Dev Psychopathol. 2018;30:383–97.
pubmed: 28595673
doi: 10.1017/S095457941700092X
Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry. 2011;168:1041–9.
pubmed: 21890791
pmcid: 3222234
doi: 10.1176/appi.ajp.2011.11020191
Xiao R, Boehnke M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol. 2009;33:453–62.
pubmed: 19140131
pmcid: 2706290
doi: 10.1002/gepi.20398
Nakaoka H, Inoue I. Meta-analysis of genetic association studies: methodologies, between-study heterogeneity and winner’s curse. J Hum Genet. 2009;54:615–23.
pubmed: 19851339
doi: 10.1038/jhg.2009.95
Dickersin K, Min YI. Publication bias: the problem that won’t go away. Ann N. Y Acad Sci. 1993;703:135–46. pdiscussion 146-138
pubmed: 8192291
doi: 10.1111/j.1749-6632.1993.tb26343.x
Weeland J, Overbeek G, de Castro BO, Matthys W. Underlying mechanisms of gene-environment interactions in externalizing behavior: a systematic review and search for theoretical mechanisms. Clin Child Fam Psychol Rev. 2015;18:413–42.
pubmed: 26537239
pmcid: 4637001
doi: 10.1007/s10567-015-0196-4
Widom CS, Brzustowicz LM. MAOA and the “cycle of violence:” childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry. 2006;60:684–9.
pubmed: 16814261
doi: 10.1016/j.biopsych.2006.03.039
Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–8.
pubmed: 31217584
pmcid: 6785182
doi: 10.1038/s41586-019-1310-4
Tsuo K, Zhou W, Wang Y, Kanai M, Namba S, Gupta R, et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genom. 2022;2:100212.
pubmed: 36778051
pmcid: 9903683
doi: 10.1016/j.xgen.2022.100212
Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat Genet. 2022;54:1640–51.
pubmed: 36333501
pmcid: 10165422
doi: 10.1038/s41588-022-01213-w
Berkout OV, Young JN, Gross AM. Mean girls and bad boys: Recent research on gender differences in conduct disorder. Aggression Violent Behav. 2011;16:503–11.
doi: 10.1016/j.avb.2011.06.001
Bishop SA, Okagbue HI, Odukoya JA. Statistical analysis of childhood and early adolescent externalizing behaviors in a middle low income country. Heliyon. 2020;6:e03377.
pubmed: 32072060
pmcid: 7013197
doi: 10.1016/j.heliyon.2020.e03377
Kim-Cohen J, Arseneault L, Caspi A, Tomas MP, Taylor A, Moffitt TE. Validity of DSM-IV conduct disorder in 41/2-5-year-old children: a longitudinal epidemiological study. Am J Psychiatry. 2005;162:1108–17.
pubmed: 15930059
doi: 10.1176/appi.ajp.162.6.1108
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: a tale of mice and men. Prog Neurobiol. 2020;194:101875.
pubmed: 32574581
pmcid: 7609507
doi: 10.1016/j.pneurobio.2020.101875
Ziegler C, Domschke K. Epigenetic signature of MAOA and MAOB genes in mental disorders. J Neural Transm (Vienna). 2018;125:1581–8.
pubmed: 30242487
doi: 10.1007/s00702-018-1929-6
Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacol (Berl). 2014;231:1581–99.
doi: 10.1007/s00213-013-3415-z
Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci. 2012;13:18.
pubmed: 22336227
pmcid: 3315415
doi: 10.1186/1471-2202-13-18
Tunbridge EM, Weickert CS, Kleinman JE, Herman MM, Chen J, Kolachana BS, et al. Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cereb Cortex. 2007;17:1206–12.
pubmed: 16835293
doi: 10.1093/cercor/bhl032
Rajagopal VM, Duan J, Vilar-Ribo L, Grove J, Zayats T, Ramos-Quiroga JA, et al. Differences in the genetic architecture of common and rare variants in childhood, persistent and late-diagnosed attention-deficit hyperactivity disorder. Nat Genet. 2022;54:1117–24.
pubmed: 35927488
pmcid: 10028590
doi: 10.1038/s41588-022-01143-7
Jung B, Ahn K, Justice C, Norman L, Price J, Sudre G, et al. Rare copy number variants in males and females with childhood attention-deficit/hyperactivity disorder. Mol Psychiatry. 2023;28:1240–7.
pubmed: 36517639
doi: 10.1038/s41380-022-01906-y
Martin J, Tammimies K, Karlsson R, Lu Y, Larsson H, Lichtenstein P, et al. Copy number variation and neuropsychiatric problems in females and males in the general population. Am J Med Genet B Neuropsychiatr Genet. 2019;180:341–50.
pubmed: 30307693
doi: 10.1002/ajmg.b.32685
Vu TH, Coccaro EF, Eichler EE, Girirajan S. Genomic architecture of aggression: rare copy number variants in intermittent explosive disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:808–16.
pubmed: 21812102
doi: 10.1002/ajmg.b.31225
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet. 2023;32:2411–21.
pubmed: 37154571
pmcid: 10360394
doi: 10.1093/hmg/ddad074
Rovira P, Demontis D, Sanchez-Mora C, Zayats T, Klein M, Mota NR, et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2020;45:1617–26.
pubmed: 32279069
pmcid: 7419307
doi: 10.1038/s41386-020-0664-5
Jansen AG, Dieleman GC, Jansen PR, Verhulst FC, Posthuma D, Polderman TJC. Psychiatric polygenic risk scores as predictor for attention deficit/hyperactivity disorder and autism spectrum disorder in a clinical child and adolescent sample. Behav Genet. 2020;50:203–12.
pubmed: 31346826
doi: 10.1007/s10519-019-09965-8
Demontis D, Walters RK, Rajagopal VM, Waldman ID, Grove J, Als TD, et al. Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder. Nat Commun. 2021;12:576.
pubmed: 33495439
pmcid: 7835232
doi: 10.1038/s41467-020-20443-2
World Health Organization, Preventing youth violence: an overview of the evidence. 2015. p. 96.
Shleptsova VA, Malyuchenko NV, Kulikova MA, Timofeeva MA, Shchegolkova JV, Vedjakov AM, et al. Role ofrenin-angiotensin systemin the formation of emotional state in humans. Bull Exp Biol Med. 2008;145:391–4.
pubmed: 19110575
doi: 10.1007/s10517-008-0099-1
Kiive E, Kurrikoff T, Mäestu J, Harro J. Effect of alpha2A-adrenoceptor of alpha2A adrenoceptor C-1291G genotype and maltreatment on hyperactivity and inattention inadolescents. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:219–224.
pubmed: 19922756
doi: 10.1016/j.pnpbp.2009.11.011
Dick DM, Meyers JL, Latendresse SJ, Creemers HE, Lansford JE, Pettit GS, et al. CHRM2, parental monitoring, and adolescent externalizing behavior: evidence for gene-environment interaction. Psychol Sci. 2011;22:481–9.
pubmed: 21441226
doi: 10.1177/0956797611403318
Thibodeau EL, Cicchetti D, Rogosch FA. Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from acumulative dopaminergic gene index. Dev Psychopathol. 2015;27:1621–36.
pubmed: 26535948
pmcid: 4786073
doi: 10.1017/S095457941500098X
Beitchman JH, Zai CC, Muir K, Berall L, Nowrouzi B, Choi E, et al. Childhood aggression, callousunemotional traits and oxytocin genes. Eur Child Adolesc Psychiatry. 2012;21:125–32.
pubmed: 22294460
doi: 10.1007/s00787-012-0240-6
Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012;11:545–51.
pubmed: 22372486
doi: 10.1111/j.1601-183X.2012.00776.x
Villafuerte S, Trucco EM, Heitzeg MM, Burmeister M, Zucker RA. Genetic variation in GABRA2 moderates peer influence on externalizing behavior in adolescents. Brain Behav. 2014;4:833–40.
pubmed: 25365806
pmcid: 4212110
doi: 10.1002/brb3.291
Salvatore JE, Meyers JL, Yan J, Aliev F, Lansford JE, Pettit GS, et al. Intergenerational continuity in parents’ and adolescents’ externalizing problems: The role of life events and their interaction with GABRA2. J Abnorm Psychol. 2015;124:709–28.
pubmed: 26075969
pmcid: 4573794
doi: 10.1037/abn0000066
van Goozen SH, Langley K, Northover C, Hubble K, Rubia K, et al. Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD. J Child Psychol Psychiatry. 2016;57:472–80.
pubmed: 26395975
doi: 10.1111/jcpp.12464
Trucco EM, Villafuerte S, Heitzeg MM, Burmeister M, Zucker RA. Susceptibility effects of GABA receptor subunit alpha-2 (GABRA2) variants and parental monitoring on externalizing behavior trajectories: Risk and protection conveyed by the minor allele. Dev Psychopathol. 2016;28:15–26.
pubmed: 25797587
doi: 10.1017/S0954579415000255
Musci RJ, Bettencourt AF, Sisto D, Maher B, Uhl G, Ialongo N, et al. Evaluating the genetic susceptibility to peer reported bullying behaviors. Psychiatry Res. 2018;263:193–8.
pubmed: 29573659
pmcid: 6085882
doi: 10.1016/j.psychres.2018.03.016
Hirata Y, Zai CC, Nowrouzi B, Shaikh SA, Kennedy JL, Beitchman JH. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children. Psychiatr Genet. 2016;26:48–51.
pubmed: 26513615
doi: 10.1097/YPG.0000000000000108
Gillentine MA, White JJ, Grochowski CM, Lupski JR, Schaaf CP, Calarge CA. CHRNA7 Deletions are Enriched in Risperidone-Treated Children and Adolescents. J Child Adolesc Psychopharmacol. 2017;27:908–15.
pubmed: 28817303
pmcid: 5725633
doi: 10.1089/cap.2017.0068
Kiive E, Laas K, Vaht M, Veidebaum T, Harro J. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 Aallele. Eur Neuropsychopharmacol. 2017;27:816–27.
pubmed: 28237505
doi: 10.1016/j.euroneuro.2017.02.003
Liu L, Cheng J, Li H, Su Y, Sun L, Yang L, et al. Association of Y-linked variants with impulsivity and aggression in boys with attention deficit/hyperactivity disorder of Chinese Handescent. Psychiatry Res. 2017;252:185–7.
pubmed: 28284086
doi: 10.1016/j.psychres.2017.02.055
DiLalla LF, DiLalla DL. Gene-Environment Correlations Affecting Children’s Early Rule-Breaking and Aggressive Play Behaviors. Twin Res Hum Genet. 2018;21:285–8.
pubmed: 30027862
doi: 10.1017/thg.2018.30
Womack SR, Clifford S, Wilson MN, Shaw DS, Lemery-Chalfant K. Genetic Moderation of the Association Between Early Family Instability and Trajectories of Aggressive Behaviors from Middle Childhood to Adolescence. Behav Genet. 2021;51:476–91.
pubmed: 34085180
doi: 10.1007/s10519-021-10069-5
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, et al. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology. 2019;104:80–88.
pubmed: 30818255
doi: 10.1016/j.psyneuen.2019.02.020
Vaht M. Variation rs6971 in the translocator protein gene (TSPO) is associated with aggressiveness and impulsivity but not with anxiety in a population representative sample of young adults. J Genet Psychol: Res Theory Hum Develop. 2021;182:149–62.
doi: 10.1080/00221325.2021.1896470