ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 01 02 2024
accepted: 21 05 2024
revised: 14 05 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 β (IL-1β) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1β production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.

Identifiants

pubmed: 38862500
doi: 10.1038/s41419-024-06765-9
pii: 10.1038/s41419-024-06765-9
doi:

Substances chimiques

NLR Family, Pyrin Domain-Containing 3 Protein 0
Inflammasomes 0
Interleukin-1beta 0
Reactive Oxygen Species 0
NLRP3 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

407

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG-23670

Informations de copyright

© 2024. The Author(s).

Références

Russo A, Vena A, Bassetti M. Antibiotic treatment of acute bacterial skin and skin structure infections. Curr Opin Infect Dis. 2022;35:120–7.
pubmed: 35245247 doi: 10.1097/QCO.0000000000000822
Kaye KS, Petty LA, Shorr AF, Zilberberg MD. Current epidemiology, etiology, and burden of acute skin infections in the United States. Clin Infect Dis. 2019;68:S193–S199.
pubmed: 30957165 pmcid: 6452002 doi: 10.1093/cid/ciz002
Golan Y. Current treatment options for acute skin and skin-structure infections. Clin Infect Dis. 2019;68:S206–S212.
pubmed: 30957166 pmcid: 6451992 doi: 10.1093/cid/ciz004
Giacobbe DR, Dettori S, Corcione S, Vena A, Sepulcri C, Maraolo AE, et al. Emerging treatment options for acute bacterial skin and skin structure infections and bloodstream infections caused by staphylococcus aureus: a comprehensive review of the evidence. Infect Drug Resistance. 2022;15:2137–57.
doi: 10.2147/IDR.S318322
Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med. 2013;5:192ra185.
doi: 10.1126/scitranslmed.3006055
Altoe LS, Alves RS, Sarandy MM, Morais-Santos M, Novaes RD, Goncalves RV. Does antibiotic use accelerate or retard cutaneous repair? A systematic review in animal models. PLoS ONE. 2019;14:e0223511.
pubmed: 31600279 pmcid: 6786583 doi: 10.1371/journal.pone.0223511
Worster B, Zawora MQ, Hsieh C. Common questions about wound care. Am Fam Physician. 2015;91:86–92.
pubmed: 25591209
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.
doi: 10.1089/wound.2013.0473
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.
pubmed: 18480812 doi: 10.1038/nature07039
Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A, et al. Structural cells are key regulators of organ-specific immune responses. Nature. 2020;583:296–302.
pubmed: 32612232 pmcid: 7610345 doi: 10.1038/s41586-020-2424-4
Strbo N, Yin N, Stojadinovic O. Innate and adaptive immune responses in wound epithelialization. Adv Wound Care. 2014;3:492–501.
doi: 10.1089/wound.2012.0435
Brazil JC, Quiros M, Nusrat A, Parkos CA. Innate immune cell-epithelial crosstalk during wound repair. J Clin Investig. 2019;129:2983–93.
pubmed: 31329162 pmcid: 6668695 doi: 10.1172/JCI124618
MacLeod AS, Mansbridge JN. The innate immune system in acute and chronic wounds. Adv Wound Care. 2016;5:65–78.
doi: 10.1089/wound.2014.0608
Falanga V, Isseroff RR, Soulika AM, Romanelli M, Margolis D, Kapp S, et al. Chronic wounds. Nat Rev Dis Prim. 2022;8:50.
pubmed: 35864102 doi: 10.1038/s41572-022-00377-3
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular pathophysiology of chronic wounds: current state and future directions. Cold Spring Harb Perspect Biol. 2023;15(4):a041243.
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother. 2022;77:2596–621.
pubmed: 35989417 doi: 10.1093/jac/dkac263
Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother. 2017;72:354–64.
pubmed: 27999068 doi: 10.1093/jac/dkw450
Garrabou G, Soriano À, Pinos T, Casanova-Mollà J, Pacheu-Grau D, Morén C, et al. Influence of mitochondrial genetics on the mitochondrial toxicity of linezolid in blood cells and skin nerve fibers. Antimicrob Agents Chemother. 2017;61(9):e00542-17.
Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell. 2007;26:393–402.
pubmed: 17499045 doi: 10.1016/j.molcel.2007.04.005
Milosevic TV, Payen VL, Sonveaux P, Muccioli GG, Tulkens PM, Van Bambeke F. Mitochondrial alterations (inhibition of mitochondrial protein expression, oxidative metabolism, and ultrastructure) induced by linezolid and tedizolid at clinically relevant concentrations in cultured human HL-60 promyelocytes and THP-1 monocytes. Antimicrob Agents Chemother. 2018;62(3):e01599-17.
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23:159–73.
pubmed: 35879417 doi: 10.1038/s41577-022-00760-x
Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol. 2017;17:608–20.
pubmed: 28669986 doi: 10.1038/nri.2017.66
Simonetti O, Lucarini G, Morroni G, Orlando F, Lazzarini R, Zizzi A, et al. New evidence and insights on dalbavancin and wound healing in a mouse model of skin infection. Antimicrob Agents Chemother. 2020;64(4):e02062-19.
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10:200223.
pubmed: 32993416 pmcid: 7536089 doi: 10.1098/rsob.200223
Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39:311–23.
pubmed: 23954133 pmcid: 3779285 doi: 10.1016/j.immuni.2013.08.001
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127:514–25.
pubmed: 17299434 doi: 10.1038/sj.jid.5700701
Tan JL, Lash B, Karami R, Nayer B, Lu YZ, Piotto C, et al. Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol. 2021;4:422.
pubmed: 33772102 pmcid: 7998035 doi: 10.1038/s42003-021-01913-9
Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011;243:136–51.
pubmed: 21884173 doi: 10.1111/j.1600-065X.2011.01046.x
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.
pubmed: 31036962 pmcid: 7807242 doi: 10.1038/s41577-019-0165-0
Watanabe H, Gaide O, Petrilli V, Martinon F, Contassot E, Roques S, et al. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Investig Dermatol. 2007;127:1956–63.
pubmed: 17429439 doi: 10.1038/sj.jid.5700819
Wickersham M, Wachtel S, Wong Fok Lung T, Soong G, Jacquet R, Richardson A, et al. Metabolic stress drives keratinocyte defenses against Staphylococcus aureus infection. Cell Rep. 2017;18:2742–51.
pubmed: 28297676 pmcid: 6799992 doi: 10.1016/j.celrep.2017.02.055
Simanski M, Rademacher F, Schroder L, Glaser R, Harder J. The inflammasome and the epidermal growth factor receptor (EGFR) are involved in the Staphylococcus aureus-mediated induction of IL-1alpha and IL-1beta in human keratinocytes. PLoS ONE. 2016;11:e0147118.
pubmed: 26808616 pmcid: 4726826 doi: 10.1371/journal.pone.0147118
Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol. 2021;6:eabj3859.
pubmed: 34678046 pmcid: 8780201 doi: 10.1126/sciimmunol.abj3859
Elliott EI, Miller AN, Banoth B, Iyer SS, Stotland A, Weiss JP, et al. Cutting edge: mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J Immunol. 2018;200:3047–52.
pubmed: 29602772 doi: 10.4049/jimmunol.1701723
Gurung P, Lukens JR, Kanneganti TD. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21:193–201.
pubmed: 25500014 doi: 10.1016/j.molmed.2014.11.008
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18:1141–60.
pubmed: 33850310 pmcid: 8093260 doi: 10.1038/s41423-021-00670-3
Soriano A, Miro O, Mensa J. Mitochondrial toxicity associated with linezolid. N Engl J Med. 2005;353:2305–6.
pubmed: 16306535 doi: 10.1056/NEJM200511243532123
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol cell Biol. 2018;19:121–35.
pubmed: 28974774 doi: 10.1038/nrm.2017.95
Marchi S, Morroni G, Pinton P, Galluzzi L. Control of host mitochondria by bacterial pathogens. Trends Microbiol. 2022;30(5):452-65.
Appleby RD, Porteous WK, Hughes G, James AM, Shannon D, Wei YH, et al. Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur J Biochem. 1999;262:108–16.
pubmed: 10231371 doi: 10.1046/j.1432-1327.1999.00350.x
Rimessi A, Bezzerri V, Patergnani S, Marchi S, Cabrini G, Pinton P. Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nat Commun. 2015;6:6201.
pubmed: 25648527 doi: 10.1038/ncomms7201
Dong H, Zhao B, Chen J, Liu Z, Li X, Li L, et al. Mitochondrial calcium uniporter promotes phagocytosis-dependent activation of the NLRP3 inflammasome. Proc Natl Acad Sci USA. 2022;119:e2123247119.
pubmed: 35733245 pmcid: 9245629 doi: 10.1073/pnas.2123247119
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24.
pubmed: 32071438 doi: 10.1038/s41580-020-0210-7
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19:713–30.
pubmed: 30143745 doi: 10.1038/s41580-018-0052-8
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.
pubmed: 21124315 doi: 10.1038/nature09663
Missiroli S, Perrone M, Gafa R, Nicoli F, Bonora M, Morciano G, et al. PML at mitochondria-associated membranes governs a trimeric complex with NLRP3 and P2X7R that modulates the tumor immune microenvironment. Cell Death Differ. 2023;30:429–41.
pubmed: 36450825 doi: 10.1038/s41418-022-01095-9
Zhang Z, Meszaros G, He WT, Xu Y, de Fatima Magliarelli H, Mailly L, et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med. 2017;214:2671–93.
pubmed: 28716882 pmcid: 5584123 doi: 10.1084/jem.20162040
Arumugam S, Qin Y, Liang Z, Han SN, Boodapati SLT, Li J, et al. GSK3beta mediates the spatiotemporal dynamics of NLRP3 inflammasome activation. Cell Death Differ. 2022;29:2060–9.
pubmed: 35477991 pmcid: 9525599 doi: 10.1038/s41418-022-00997-y
Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell Mol Immunol. 2022;19(11):1201-14.
Pereira AC, De Pascale J, Resende R, Cardoso S, Ferreira I, Neves BM, et al. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system. Cell Mol Life Sci. 2022;79:213.
pubmed: 35344105 pmcid: 11072401 doi: 10.1007/s00018-022-04211-7
Hertlein V, Flores-Romero H, Das KK, Fischer S, Heunemann M, Calleja-Felipe M, et al. MERLIN: a novel BRET-based proximity biosensor for studying mitochondria-ER contact sites. Life Sci Alliance. 2020;3.
Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, et al. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 2018;9:329.
pubmed: 29491386 pmcid: 5832426 doi: 10.1038/s41419-017-0027-2
Namgaladze D, Khodzhaeva V, Brüne B. ER-mitochondria communication in cells of the innate immune system. Cells. 2019;8(9):1088.
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol. 2020;219(12):e202006194.
Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science. 2017;358:623–30.
pubmed: 29097544 pmcid: 5818999 doi: 10.1126/science.aan6009
Elbaz-Alon Y, Guo Y, Segev N, Harel M, Quinnell DE, Geiger T, et al. PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat Commun. 2020;11:3645.
pubmed: 32686675 pmcid: 7371716 doi: 10.1038/s41467-020-17451-7
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, et al. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Abeta42 toxicity. Life Sci. Alliance. 2022;5(11):e202201531.
Issa R, Thompson KL, Price BL. Control of Staphylococcal-mediated endogenous protease activity alters wound closure time in a complex wound model. J Dermatol Sci. 2022;105:105–12.
pubmed: 35101350 doi: 10.1016/j.jdermsci.2022.01.005
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like receptor pyrin domain containing 3 inflammasome to improve healing of diabetic wounds. Adv Wound Care. 2023;12:644–56.
doi: 10.1089/wound.2021.0148
Weinheimer-Haus EM, Mirza RE, Koh TJ. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS ONE. 2015;10:e0119106.
pubmed: 25793779 pmcid: 4368510 doi: 10.1371/journal.pone.0119106
Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.
pubmed: 22342844 pmcid: 3312986 doi: 10.1016/j.immuni.2012.01.009
Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55:1370–85.e1378.
pubmed: 35835107 pmcid: 9378606 doi: 10.1016/j.immuni.2022.06.007
Dunham-Snary KJ, Surewaard BG, Mewburn JD, Bentley RE, Martin AY, Jones O, et al. Mitochondria in human neutrophils mediate killing of Staphylococcus aureus. Redox Biol. 2022;49:102225.
pubmed: 34959099 doi: 10.1016/j.redox.2021.102225
Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nunez G, He Y, et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity. 2015;43:451–62.
pubmed: 26341399 pmcid: 4582788 doi: 10.1016/j.immuni.2015.08.008
Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci. 2011;124:2143–52.
pubmed: 21628424 pmcid: 3113668 doi: 10.1242/jcs.080762
de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456:605–10.
pubmed: 19052620 doi: 10.1038/nature07534
Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci USA. 2013;110:17963–8.
pubmed: 24127597 pmcid: 3816452 doi: 10.1073/pnas.1312571110
Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, et al. MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell. 2013;51:20–34.
pubmed: 23727017 doi: 10.1016/j.molcel.2013.04.023
Park Y-J, Dodantenna N, Kim T-H, Lee H-S, Yoo Y-S, Lee E-S, et al. MARCH5-dependent NLRP3 ubiquitination is an essential step for NEK7 docking on the mitochondria. bioRxiv. 2023: https://doi.org/10.1101/2023.01.12.523764 .
Jussupow A, Di Luca A, Kaila VRI. How cardiolipin modulates the dynamics of respiratory complex I. Sci Adv. 2019;5:eaav1850.
pubmed: 30906865 pmcid: 6426460 doi: 10.1126/sciadv.aav1850
Vos M, Geens A, Bohm C, Deaulmerie L, Swerts J, Rossi M, et al. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J Cell Biol. 2017;216:695–708.
pubmed: 28137779 pmcid: 5346965 doi: 10.1083/jcb.201511044
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 2022;23:692–704.
pubmed: 35484407 pmcid: 9098388 doi: 10.1038/s41590-022-01185-3
Shinjo S, Jiang S, Nameta M, Suzuki T, Kanai M, Nomura Y, et al. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance. Exp Cell Res. 2017;359:86–93.
pubmed: 28827061 doi: 10.1016/j.yexcr.2017.08.006
Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM. Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PloS one. 2017;12:e0182027.
pubmed: 28742858 pmcid: 5526536 doi: 10.1371/journal.pone.0182027
Simonetti O, Lucarini G, Orlando F, Pierpaoli E, Ghiselli R, Provinciali M, et al. Role of daptomycin on burn wound healing in an animal methicillin-resistant Staphylococcus aureus infection model. Antimicrob Agents Chemother. 2017;61.
Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, et al. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca
Hemel I, Engelen BPH, Luber N, Gerards M. A hitchhiker’s guide to mitochondrial quantification. Mitochondrion. 2021;59:216–24.
pubmed: 34102326 doi: 10.1016/j.mito.2021.06.005
Sato A, Buque A, Yamazaki T, Bloy N, Petroni G, Galluzzi L. Immunofluorescence microscopy-based assessment of cytosolic DNA accumulation in mammalian cells. STAR Protoc. 2021;2:100488.
pubmed: 34041502 pmcid: 8141942 doi: 10.1016/j.xpro.2021.100488
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, et al. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol. 2024;26:194–206.
pubmed: 38332353 doi: 10.1038/s41556-023-01343-1
Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, et al. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc. 2013;8:2105–18.
pubmed: 24113784 doi: 10.1038/nprot.2013.127

Auteurs

Caterina Licini (C)

Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.

Gianluca Morroni (G)

Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.

Guendalina Lucarini (G)

Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.

Veronica Angela Maria Vitto (VAM)

Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.

Fiorenza Orlando (F)

Experimental Animal Models for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy.

Sonia Missiroli (S)

Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.

Gloria D'Achille (G)

Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.

Mariasole Perrone (M)

Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.

Tatiana Spadoni (T)

Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.

Laura Graciotti (L)

Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.

Giorgia Bigossi (G)

Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.

Mauro Provinciali (M)

Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.

Annamaria Offidani (A)

Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.

Monica Mattioli-Belmonte (M)

Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.

Oscar Cirioni (O)

Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.

Paolo Pinton (P)

Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.

Oriana Simonetti (O)

Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy. o.simonetti@staff.univpm.it.

Saverio Marchi (S)

Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy. s.marchi@univpm.it.
Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy. s.marchi@univpm.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH