Astronaut omics and the impact of space on the human body at scale.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
12
02
2023
accepted:
22
03
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research. As humanity becomes increasingly spacefaring, high-resolution omics on orbit could permit an advent of precision spaceflight healthcare. Alongside the scientific potential, we consider the complex ethical, cultural, and legal challenges intrinsic to the human space omics discipline, and how philosophical frameworks may benefit from international perspectives.
Identifiants
pubmed: 38862505
doi: 10.1038/s41467-024-47237-0
pii: 10.1038/s41467-024-47237-0
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4952Informations de copyright
© 2024. The Author(s).
Références
Summers, R. L., Johnston, S. L., Marshburn, T. H. & Williams, D. R. Emergencies in space. Ann. Emerg. Med. 46, 177–184 (2005).
pubmed: 16046951
doi: 10.1016/j.annemergmed.2005.02.010
Gao, P. et al. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res. 32, 1199–1214 (2022).
pubmed: 35667843
pmcid: 9248886
doi: 10.1101/gr.276521.121
Garrett-Bakelman, F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019). The study compared identical twin astronauts (one in spaceflight and one on Earth) and demonstrated the importance of integrating various modalities (including omics) to more comprehensively understand the longitudinal effects of long-duration spaceflight on the human body.
pubmed: 30975860
pmcid: 7580864
doi: 10.1126/science.aau8650
Mason, C. E. The Next 500 Years: Engineering Life to Reach New Worlds. (MIT Press, 2021).
Da Silveira W. A. et al. Revamping Space-omics in Europe. Cell Syst. 11, 555–556 (2020).
Deane, C. S., da Silveira, W. A. & Herranz, R., Space Omics Topical Team. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 25, 103920 (2022).
pubmed: 35265808
pmcid: 8898910
doi: 10.1016/j.isci.2022.103920
Berrios, D. C., Galazka, J., Grigorev, K., Gebre, S. & Costes, S. V. NASA GeneLab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49, D1515–D1522 (2021).
pubmed: 33080015
doi: 10.1093/nar/gkaa887
Dursi, L. J. et al. CanDIG: Federated network across Canada for multi-omic and health data discovery and analysis. Cell Genom. 1, 100033 (2021).
Brzhozovskiy, A. et al. Label-free study of cosmonaut’s urinary proteome changes after long-duration spaceflights. Eur. J. Mass Spectrom. 23, 225–229 (2017).
doi: 10.1177/1469066717717610
Liu, Z. et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11, 807–819 (2020).
pubmed: 31924114
pmcid: 7524348
doi: 10.1080/19490976.2019.1710091
Ansdell, M., Ehrenfreund, P. & McKay, C. Stepping stones toward global space exploration. Acta Astronaut. 68, 2098–2113 (2011).
doi: 10.1016/j.actaastro.2010.10.025
Schmidt, M. A., Schmidt, C. M., Hubbard, R. M. & Mason, C. E. Why personalized medicine is the frontier of medicine and performance for humans in space. New Space 8, 63–76 (2020).
Schmidt, M. A. & Goodwin, T. J. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 9, 1134–1156 (2013).
pubmed: 24273472
pmcid: 3825629
doi: 10.1007/s11306-013-0556-3
Ginsburg, G. S. & Phillips, K. A. Precision medicine: from science to value. Health Affairs 37, 694–701 (2018).
Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407 (2019).
pubmed: 31681296
pmcid: 6797618
doi: 10.3389/fimmu.2019.02407
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 184, 6002 (2021).
Jost, P. D. Simulating human space physiology with bed rest. Hippokratia 12, 37–40 (2008).
pubmed: 19048091
pmcid: 2577398
Wotring, V. E. The risk of therapeutic failure due to ineffective medications Technical Report NASA/JSC-CN-24713 (National Aeronautics and Space Administration, 2011).
Putcha, L., Berens, K. L., Marshburn, T. H., Ortega, H. J. & Billica, R. D. Pharmaceutical use by U.S. astronauts on space shuttle missions. Aviat. Space Environ. Med. 70, 705–708 (1999).
pubmed: 10417009
Wotring, V. E. Chemical potency and degradation products of medications stored over 550 earth days at the International Space Station. AAPS J. 18, 210–216 (2016).
pubmed: 26546565
doi: 10.1208/s12248-015-9834-5
Du, B. et al. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. AAPS J. 13, 299–308 (2011).
pubmed: 21479701
pmcid: 3085701
doi: 10.1208/s12248-011-9270-0
Blue, R. S. et al. Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 5, 14 (2019).
pubmed: 31231676
pmcid: 6565689
doi: 10.1038/s41526-019-0075-2
Kast, J., Yu, Y., Seubert, C. N., Wotring, V. E. & Derendorf, H. Drugs in space: pharmacokinetics and pharmacodynamics in astronauts. Eur. J. Pharm. Sci. 109S, S2–S8 (2017).
pubmed: 28533143
doi: 10.1016/j.ejps.2017.05.025
Kim, M. & Plante, I. An Assessment of How Radiation Incurred during a Mars Mission Could Affect Food and Pharmaceuticals. (Wyle Science, Technology, and Engineering Group, 2015).
Stingl, J. C., Welker, S., Hartmann, G., Damann, V. & Gerzer, R. Where failure is not an option—personalized medicine in astronauts. PLoS ONE 10, e0140764 (2015).
Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M., Klein, T. & Leeder, J. S. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med. 19, 69–76 (2017).
pubmed: 27388693
doi: 10.1038/gim.2016.80
Pavez Loriè, E. et al. The future of personalized medicine in space: from observations to countermeasures. Front. Bioeng. Biotechnol. 9, 739747 (2021).
pubmed: 34966726
pmcid: 8710508
doi: 10.3389/fbioe.2021.739747
Guengerich, F. P. & Peter Guengerich, F. Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology 21, 70–83 (2008).
Mathyk, B. A. et al. Spaceflight alters insulin and estrogen signaling pathways. Res. Sq. https://doi.org/10.21203/rs.3.rs-2362750/v1 (2023).
doi: 10.21203/rs.3.rs-2362750/v1
Chancellor, J. C. et al. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018).
pubmed: 29644336
pmcid: 5882936
doi: 10.1038/s41526-018-0043-2
Blue, R. S. et al. Challenges in clinical management of radiation-induced illnesses during exploration spaceflight. Aerosp. Med Hum. Perform. 90, 966–977 (2019).
pubmed: 31666159
doi: 10.3357/AMHP.5370.2019
Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13, 904–912 (2014).
pubmed: 25127232
pmcid: 4188436
doi: 10.1016/S1474-4422(14)70122-X
Moltke, L. L. V. et al. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br. J. Clin. Pharmacol. 48, 89–97 (1999).
Dinges, D. F., Basner, M., Ecker, A. J., Baskin, P. & Johnston, S. L. Effects of zolpidem and zaleplon on cognitive performance after emergent morning awakenings at Tmax: a randomized placebo-controlled trial. Sleep 42, zsy258 (2019).
pubmed: 30576525
doi: 10.1093/sleep/zsy258
Norsk, P. et al. Unexpected renal responses in space. Lancet 356, 1577–1578 (2000).
pubmed: 11075778
doi: 10.1016/S0140-6736(00)03135-4
Grigoriev, A. I. et al. Preliminary medical results of the Mir year-long mission. Acta Astronaut 23, 1–8 (1991).
pubmed: 11537109
doi: 10.1016/0094-5765(91)90092-J
Dello Russo, C. et al. Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. Br. J. Pharmacol. 179, 2538–2557 (2022).
pubmed: 35170019
doi: 10.1111/bph.15822
Lee, A. G. et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6, https://doi.org/10.1038/s41526-020-0097-9 (2020).
Ong, J. et al. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br. J. Ophthalmol. 107, 895–900 (2023).
pubmed: 36690421
doi: 10.1136/bjo-2022-322892
Zwart, S. et al. Vision changes after spaceflight are related to alterations in folate– and vitamin B-12–dependent one-carbon metabolism. SciVee https://doi.org/10.4016/38821.01 (2012).
Zwart, S. R. et al. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. FASEB J. 30, 141–148 (2016). The research documented an association between polymorphisms, vitamin B status, and spaceflight-induced vision ailments, suggesting the importance of optimizing nutrition during space missions.
pubmed: 26316272
doi: 10.1096/fj.15-278457
Kesler, A. et al. Thrombophilic factors in idiopathic intracranial hypertension: a report of 51 patients and a meta-analysis. Blood Coagulation Fibrinolysis 21, 328–333. https://doi.org/10.1097/mbc.0b013e328338ce12 (2010).
Fenech, M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat. Res. 733, 21–33 (2012).
pubmed: 22093367
doi: 10.1016/j.mrfmmm.2011.11.003
Smith, S. M. Red blood cell and iron metabolism during space flight. Nutrition 18, 864–866 (2002).
pubmed: 12361780
doi: 10.1016/S0899-9007(02)00912-7
Jahanshad, N. et al. Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc. Natl Acad. Sci. USA 109, E851–E859 (2012).
pubmed: 22232660
pmcid: 3325658
doi: 10.1073/pnas.1105543109
Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–443 (2005).
pubmed: 15735075
doi: 10.1093/jn/135.3.437
Broedbaek, K. et al. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radic. Biol. Med. 47, 1230–1233 (2009).
pubmed: 19686840
doi: 10.1016/j.freeradbiomed.2009.08.004
Hartwig, A. Role of magnesium in genomic stability. Mutat. Res. 475, 113–121 (2001).
pubmed: 11295157
doi: 10.1016/S0027-5107(01)00074-4
Lang, T. et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 3, 8 (2017).
pubmed: 28649630
pmcid: 5445590
doi: 10.1038/s41526-017-0013-0
Prietl, B., Treiber, G., Pieber, T. & Amrein, K. Vitamin D and immune function. Nutrients 5, 2502–2521 (2013).
Kongsbak, M., Levring, T. B., Geisler, C. & von Essen, M. R. The vitamin D receptor and T cell function. Front. Immunol. 4, https://doi.org/10.3389/fimmu.2013.00148 (2013).
Usategui-Martín, R., De Luis-Román, D.-A., Fernández-Gómez, J. M., Ruiz-Mambrilla, M. & Pérez-Castrillón, J.-L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: a systematic review and meta-analysis. Nutrients 14, 360 (2022).
Qi, Q. et al. Vitamin D metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 year weight-loss trial: POUNDS Lost. Diabetologia 58, 2791–2799 (2015).
Merino, J. et al. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol. Psychiatry 24, 1920–1932 (2019).
pubmed: 29988085
doi: 10.1038/s41380-018-0079-4
Zhang, X. et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes 61, 3005–3011 (2012).
pubmed: 22891219
pmcid: 3478519
doi: 10.2337/db11-1799
Leach, C. S., Johnson, P. C. & Cintron, N. M. The endocrine system in space flight. Acta Astronautica 17, 161–166 (1988).
Bergouignan, A. et al. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities. NPJ Microgravity 2, 16029 (2016).
pubmed: 28725737
pmcid: 5515527
doi: 10.1038/npjmgrav.2016.29
Heer, M., De Santo, N. G., Cirillo, M. & Drummer, C. Body mass changes, energy, and protein metabolism in space. Am. J. Kidney Dis. 38, 691–695 (2001).
pubmed: 11532708
doi: 10.1053/ajkd.2001.27767
Cope, H. et al. Routine omics collection is a golden opportunity for European human research in space and analog environments. Patterns Prejudice 3, 100550 (2022).
doi: 10.1016/j.patter.2022.100550
Li, X. et al. Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 15, e2001402 (2017).
pubmed: 28081144
pmcid: 5230763
doi: 10.1371/journal.pbio.2001402
Hughson, R. L. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310, H628–H638 (2016).
pubmed: 26747504
doi: 10.1152/ajpheart.00802.2015
Overbey, E. G. et al. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. Cell Rep. Methods 2, 100325 (2022).
Rutter, L. A. et al. Protective alleles and precision healthcare in crewed spaceflight. Nat. Commun. (2024).
Stepanek, J., Blue, R. S. & Parazynski, S. Space medicine in the era of civilian spaceflight. Reply. N. Engl. J. Med. 380, e50 (2019).
pubmed: 31216417
doi: 10.1056/NEJMra1609012
Urquieta, E., Wu, J., Hury, J. & Donoviel, D. Establishment of an open biomedical database for commercial spaceflight. Nat. Med. 28, 611–612 (2022).
pubmed: 35318465
doi: 10.1038/s41591-022-01761-y
Rhee, S. Y., Birnbaum, K. D. & Ehrhardt, D. W. Towards building a Plant Cell Atlas. Trends Plant Sci. 24, 303–310 (2019).
pubmed: 30777643
pmcid: 7449582
doi: 10.1016/j.tplants.2019.01.006
Han, X. et al. Mapping the mouse cell Atlas by microwell-seq. Cell 173, 1307 (2018).
pubmed: 29775597
doi: 10.1016/j.cell.2018.05.012
Regev, A. et al. The Human Cell Atlas. Elife 6, (2017). The project describes the international collaboration to create a Human Cell Atlas that can provide better resolution of cellular dysfunction in human diseases.
Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).
pubmed: 29072289
doi: 10.1038/550451a
Masarapu, Y. et al. Spatially resolved multiomics on the neuronal effects induced by spacefligh. Nat. Commun. https://doi.org/10.1038/s41467-024-48916-8 (2024).
Elmentaite, R., Teichmann, S. A. & Madissoon, E. Studying immune to non-immune cell cross-talk using single-cell technologies. Curr. Opin. Syst. Biol. 18, 87–94 (2019).
pubmed: 32984660
pmcid: 7493433
doi: 10.1016/j.coisb.2019.10.005
Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell–cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26, 12–23. https://doi.org/10.1016/j.coisb.2021.03.007 (2021).
Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).
Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019). The paper introduces the Tissue Chips in Space initiative, which will facilitate the use of “organ-on-chips” and “tissue chips” to study how in-vitro models of human organs and tissues respond to spaceflight.
pubmed: 31848830
pmcid: 8294131
doi: 10.1007/s11095-019-2742-0
Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).
pubmed: 32405060
pmcid: 7220853
doi: 10.1038/s41591-020-0844-1
Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).
pubmed: 28940711
doi: 10.1002/pro.3307
Rutter, L. et al. A new era for space life science: international standards for space omics processing. Patterns 100148. https://doi.org/10.1016/j.patter.2020.100148 (2020).
Committee on Ethics Principles and Guidelines for Health Standards for Long Duration and Exploration Spaceflights, Board on Health Sciences Policy & Institute of Medicine. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework. (National Academies Press, 2014).
Reed, R. D. & Antonsen, E. L. Should NASA Collect Astronauts’ Genetic Information for Occupational Surveillance and Research? AMA J. Ethics 20, E849–E856 (2018).
pubmed: 30242816
doi: 10.1001/amajethics.2018.849
Antonsen, E. L. & Reed, R. D. Policy Considerations for Precision Medicine in Human Spaceflight. Houst. J. Health Law Policy (2019). The paper examines the need for anticipatory considerations of cultural, legal, and ethical issues as the precision healthcare field begins to be applied to spaceflight.
Arnould, J. Icarus’ Second Chance: The Basis and Perspectives of Space Ethics (Springer Science & Business Media, 2011).
Knoppers, B. M. International ethics harmonization and the global alliance for genomics and health. Genome Med. 6, 13 (2014).
pubmed: 25031613
pmcid: 3979077
doi: 10.1186/gm530
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
pubmed: 33242417
pmcid: 7870178
doi: 10.1016/j.cell.2020.11.002
Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).
pubmed: 33976213
pmcid: 8113601
doi: 10.1038/s41467-021-22989-1
Belli, M., Sapora, O. & Tabocchini, M. A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat. Res. 43, S13–S19 (2002).
pubmed: 12793724
doi: 10.1269/jrr.43.S13
Schmidt, M. A., Meydan, C., Schmidt, C. M., Afshinnekoo, E. & Mason, C. E. The NASA twins study: the effect of one year in space on long-chain fatty acid desaturases and elongases. Lifestyle Genom. 13, 107–121 (2020).
pubmed: 32375154
doi: 10.1159/000506769
Lippert, C. et al. Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl Acad. Sci. USA 114, 10166–10171 (2017).
pubmed: 28874526
pmcid: 5617305
doi: 10.1073/pnas.1711125114
Gürsoy, G. et al. Data sanitization to reduce private information leakage from functional genomics. Cell 183, 905–917.e16 (2020).
pubmed: 33186529
pmcid: 7672785
doi: 10.1016/j.cell.2020.09.036
Geyer, P. E., Mann, S. P., Treit, P. V. & Mann, M. Plasma proteomes can be reidentifiable and potentially contain personally sensitive and incidental findings. Mol. Cell. Proteom. 20, 100035 (2021).
doi: 10.1074/mcp.RA120.002359
Bandeira, N., Deutsch, E. W., Kohlbacher, O., Martens, L. & Vizcaíno, J. A. Data management of sensitive human proteomics data: current practices, recommendations, and perspectives for the future. Mol. Cell. Proteom. 20, 100071 (2021).
doi: 10.1016/j.mcpro.2021.100071
Elhaik, E., Ahsanuddin, S., Robinson, J. M., Foster, E. M. & Mason, C. E. The impact of cross-kingdom molecular forensics on genetic privacy. Microbiome 9. https://doi.org/10.1186/s40168-021-01076-z (2021).
Dupras, C. & Bunnik, E. M. Toward a framework for assessing privacy risks in multi-omic research and databases. Am. J. Bioethics 21, 46–64 (2021).
Joly, Y., Dupras, C., Pinkesz, M., Tovino, S. A. & Rothstein, M. A. Looking beyond GINA: policy approaches to address genetic discrimination. Annu. Rev. Genomics Hum. Genet. 21, 491–507 (2020).
pubmed: 31961723
doi: 10.1146/annurev-genom-111119-011436
Mehlman, M. J. & Parasidis, E. Predictive genetic testing by the U.S. military: legal and ethical issues. Mil. Med. 186, 726–732 (2021).
pubmed: 33511993
doi: 10.1093/milmed/usab011
Cortese, F. et al. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 9, 14692–14722 (2018).
pubmed: 29581875
pmcid: 5865701
doi: 10.18632/oncotarget.24461
Nguyen, M. T. et al. Model consent clauses for rare disease research. BMC Med. Ethics 20, 55 (2019). The paper demonstrates how global task forces can work together to improve consent procedures for rare disease research, which may be applicable to space travelers (who are also small in number and may present with conditions not present in the terrestrial population).
pubmed: 31370847
pmcid: 6676617
doi: 10.1186/s12910-019-0390-x
Boyd, J. E. et al. Cultural differences in crewmembers and mission control personnel during two space station programs. Aviat. Space Environ. Med. 80, 532–540 (2009).
pubmed: 19522363
Thorogood, A., Dalpé, G. & Knoppers, B. M. Return of individual genomic research results: are laws and policies keeping step? Eur. J. Hum. Genet. 27, 535–546 (2019).
pubmed: 30622328
pmcid: 6460582
doi: 10.1038/s41431-018-0311-3
World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).
doi: 10.1001/jama.2013.281053
Saulnier, K. M. et al. Benefits and barriers in the design of harmonized access agreements for international data sharing. Sci. Data 6, 297 (2019).
pubmed: 31792275
pmcid: 6889499
doi: 10.1038/s41597-019-0310-4
Kaye, J. et al. Access Governance for Biobanks: The Case of the BioSHaRE-EU Cohorts. Biopreserv. Biobank. 14, 201–206 (2016).
pubmed: 27183185
pmcid: 5939924
doi: 10.1089/bio.2015.0124
Thorogood, A. et al. International Federation of Genomic Medicine Databases using GA4GH standards. Cell Genom. 1, 100032 (2021).
pubmed: 35128509
pmcid: 8813094
doi: 10.1016/j.xgen.2021.100032
Rieke, N. et al. The future of digital health with federated learning. NPJ Digit Med. 3, 119 (2020).
pubmed: 33015372
pmcid: 7490367
doi: 10.1038/s41746-020-00323-1
Casaletto, J. et al. Federated analysis of BRCA1 and BRCA2 variation in a Japanese cohort. Cell Genom. 2, 100109 (2022).
pubmed: 35373174
pmcid: 8975122
doi: 10.1016/j.xgen.2022.100109
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
pubmed: 26978244
pmcid: 4792175
doi: 10.1038/sdata.2016.18
Steinsbekk, K. S., Kåre Myskja, B. & Solberg, B. Broad consent versus dynamic consent in biobank research: is passive participation an ethical problem? Eur. J. Hum. Genet. 21, 897–902 (2013).
pubmed: 23299918
pmcid: 3746258
doi: 10.1038/ejhg.2012.282