Astronaut omics and the impact of space on the human body at scale.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 12 02 2023
accepted: 22 03 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research. As humanity becomes increasingly spacefaring, high-resolution omics on orbit could permit an advent of precision spaceflight healthcare. Alongside the scientific potential, we consider the complex ethical, cultural, and legal challenges intrinsic to the human space omics discipline, and how philosophical frameworks may benefit from international perspectives.

Identifiants

pubmed: 38862505
doi: 10.1038/s41467-024-47237-0
pii: 10.1038/s41467-024-47237-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

4952

Informations de copyright

© 2024. The Author(s).

Références

Summers, R. L., Johnston, S. L., Marshburn, T. H. & Williams, D. R. Emergencies in space. Ann. Emerg. Med. 46, 177–184 (2005).
pubmed: 16046951 doi: 10.1016/j.annemergmed.2005.02.010
Gao, P. et al. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res. 32, 1199–1214 (2022).
pubmed: 35667843 pmcid: 9248886 doi: 10.1101/gr.276521.121
Garrett-Bakelman, F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019). The study compared identical twin astronauts (one in spaceflight and one on Earth) and demonstrated the importance of integrating various modalities (including omics) to more comprehensively understand the longitudinal effects of long-duration spaceflight on the human body.
pubmed: 30975860 pmcid: 7580864 doi: 10.1126/science.aau8650
Mason, C. E. The Next 500 Years: Engineering Life to Reach New Worlds. (MIT Press, 2021).
Da Silveira W. A. et al. Revamping Space-omics in Europe. Cell Syst. 11, 555–556 (2020).
Deane, C. S., da Silveira, W. A. & Herranz, R., Space Omics Topical Team. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 25, 103920 (2022).
pubmed: 35265808 pmcid: 8898910 doi: 10.1016/j.isci.2022.103920
Berrios, D. C., Galazka, J., Grigorev, K., Gebre, S. & Costes, S. V. NASA GeneLab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49, D1515–D1522 (2021).
pubmed: 33080015 doi: 10.1093/nar/gkaa887
Dursi, L. J. et al. CanDIG: Federated network across Canada for multi-omic and health data discovery and analysis. Cell Genom. 1, 100033 (2021).
Brzhozovskiy, A. et al. Label-free study of cosmonaut’s urinary proteome changes after long-duration spaceflights. Eur. J. Mass Spectrom. 23, 225–229 (2017).
doi: 10.1177/1469066717717610
Liu, Z. et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11, 807–819 (2020).
pubmed: 31924114 pmcid: 7524348 doi: 10.1080/19490976.2019.1710091
Ansdell, M., Ehrenfreund, P. & McKay, C. Stepping stones toward global space exploration. Acta Astronaut. 68, 2098–2113 (2011).
doi: 10.1016/j.actaastro.2010.10.025
Schmidt, M. A., Schmidt, C. M., Hubbard, R. M. & Mason, C. E. Why personalized medicine is the frontier of medicine and performance for humans in space. New Space 8, 63–76 (2020).
Schmidt, M. A. & Goodwin, T. J. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 9, 1134–1156 (2013).
pubmed: 24273472 pmcid: 3825629 doi: 10.1007/s11306-013-0556-3
Ginsburg, G. S. & Phillips, K. A. Precision medicine: from science to value. Health Affairs 37, 694–701 (2018).
Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407 (2019).
pubmed: 31681296 pmcid: 6797618 doi: 10.3389/fimmu.2019.02407
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 184, 6002 (2021).
Jost, P. D. Simulating human space physiology with bed rest. Hippokratia 12, 37–40 (2008).
pubmed: 19048091 pmcid: 2577398
Wotring, V. E. The risk of therapeutic failure due to ineffective medications Technical Report NASA/JSC-CN-24713 (National Aeronautics and Space Administration, 2011).
Putcha, L., Berens, K. L., Marshburn, T. H., Ortega, H. J. & Billica, R. D. Pharmaceutical use by U.S. astronauts on space shuttle missions. Aviat. Space Environ. Med. 70, 705–708 (1999).
pubmed: 10417009
Wotring, V. E. Chemical potency and degradation products of medications stored over 550 earth days at the International Space Station. AAPS J. 18, 210–216 (2016).
pubmed: 26546565 doi: 10.1208/s12248-015-9834-5
Du, B. et al. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. AAPS J. 13, 299–308 (2011).
pubmed: 21479701 pmcid: 3085701 doi: 10.1208/s12248-011-9270-0
Blue, R. S. et al. Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 5, 14 (2019).
pubmed: 31231676 pmcid: 6565689 doi: 10.1038/s41526-019-0075-2
Kast, J., Yu, Y., Seubert, C. N., Wotring, V. E. & Derendorf, H. Drugs in space: pharmacokinetics and pharmacodynamics in astronauts. Eur. J. Pharm. Sci. 109S, S2–S8 (2017).
pubmed: 28533143 doi: 10.1016/j.ejps.2017.05.025
Kim, M. & Plante, I. An Assessment of How Radiation Incurred during a Mars Mission Could Affect Food and Pharmaceuticals. (Wyle Science, Technology, and Engineering Group, 2015).
Stingl, J. C., Welker, S., Hartmann, G., Damann, V. & Gerzer, R. Where failure is not an option—personalized medicine in astronauts. PLoS ONE 10, e0140764 (2015).
Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M., Klein, T. & Leeder, J. S. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med. 19, 69–76 (2017).
pubmed: 27388693 doi: 10.1038/gim.2016.80
Pavez Loriè, E. et al. The future of personalized medicine in space: from observations to countermeasures. Front. Bioeng. Biotechnol. 9, 739747 (2021).
pubmed: 34966726 pmcid: 8710508 doi: 10.3389/fbioe.2021.739747
Guengerich, F. P. & Peter Guengerich, F. Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology 21, 70–83 (2008).
Mathyk, B. A. et al. Spaceflight alters insulin and estrogen signaling pathways. Res. Sq. https://doi.org/10.21203/rs.3.rs-2362750/v1 (2023).
doi: 10.21203/rs.3.rs-2362750/v1
Chancellor, J. C. et al. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018).
pubmed: 29644336 pmcid: 5882936 doi: 10.1038/s41526-018-0043-2
Blue, R. S. et al. Challenges in clinical management of radiation-induced illnesses during exploration spaceflight. Aerosp. Med Hum. Perform. 90, 966–977 (2019).
pubmed: 31666159 doi: 10.3357/AMHP.5370.2019
Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13, 904–912 (2014).
pubmed: 25127232 pmcid: 4188436 doi: 10.1016/S1474-4422(14)70122-X
Moltke, L. L. V. et al. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br. J. Clin. Pharmacol. 48, 89–97 (1999).
Dinges, D. F., Basner, M., Ecker, A. J., Baskin, P. & Johnston, S. L. Effects of zolpidem and zaleplon on cognitive performance after emergent morning awakenings at Tmax: a randomized placebo-controlled trial. Sleep 42, zsy258 (2019).
pubmed: 30576525 doi: 10.1093/sleep/zsy258
Norsk, P. et al. Unexpected renal responses in space. Lancet 356, 1577–1578 (2000).
pubmed: 11075778 doi: 10.1016/S0140-6736(00)03135-4
Grigoriev, A. I. et al. Preliminary medical results of the Mir year-long mission. Acta Astronaut 23, 1–8 (1991).
pubmed: 11537109 doi: 10.1016/0094-5765(91)90092-J
Dello Russo, C. et al. Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. Br. J. Pharmacol. 179, 2538–2557 (2022).
pubmed: 35170019 doi: 10.1111/bph.15822
Lee, A. G. et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6, https://doi.org/10.1038/s41526-020-0097-9 (2020).
Ong, J. et al. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br. J. Ophthalmol. 107, 895–900 (2023).
pubmed: 36690421 doi: 10.1136/bjo-2022-322892
Zwart, S. et al. Vision changes after spaceflight are related to alterations in folate– and vitamin B-12–dependent one-carbon metabolism. SciVee https://doi.org/10.4016/38821.01 (2012).
Zwart, S. R. et al. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. FASEB J. 30, 141–148 (2016). The research documented an association between polymorphisms, vitamin B status, and spaceflight-induced vision ailments, suggesting the importance of optimizing nutrition during space missions.
pubmed: 26316272 doi: 10.1096/fj.15-278457
Kesler, A. et al. Thrombophilic factors in idiopathic intracranial hypertension: a report of 51 patients and a meta-analysis. Blood Coagulation Fibrinolysis 21, 328–333. https://doi.org/10.1097/mbc.0b013e328338ce12 (2010).
Fenech, M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat. Res. 733, 21–33 (2012).
pubmed: 22093367 doi: 10.1016/j.mrfmmm.2011.11.003
Smith, S. M. Red blood cell and iron metabolism during space flight. Nutrition 18, 864–866 (2002).
pubmed: 12361780 doi: 10.1016/S0899-9007(02)00912-7
Jahanshad, N. et al. Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc. Natl Acad. Sci. USA 109, E851–E859 (2012).
pubmed: 22232660 pmcid: 3325658 doi: 10.1073/pnas.1105543109
Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–443 (2005).
pubmed: 15735075 doi: 10.1093/jn/135.3.437
Broedbaek, K. et al. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radic. Biol. Med. 47, 1230–1233 (2009).
pubmed: 19686840 doi: 10.1016/j.freeradbiomed.2009.08.004
Hartwig, A. Role of magnesium in genomic stability. Mutat. Res. 475, 113–121 (2001).
pubmed: 11295157 doi: 10.1016/S0027-5107(01)00074-4
Lang, T. et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 3, 8 (2017).
pubmed: 28649630 pmcid: 5445590 doi: 10.1038/s41526-017-0013-0
Prietl, B., Treiber, G., Pieber, T. & Amrein, K. Vitamin D and immune function. Nutrients 5, 2502–2521 (2013).
Kongsbak, M., Levring, T. B., Geisler, C. & von Essen, M. R. The vitamin D receptor and T cell function. Front. Immunol. 4, https://doi.org/10.3389/fimmu.2013.00148 (2013).
Usategui-Martín, R., De Luis-Román, D.-A., Fernández-Gómez, J. M., Ruiz-Mambrilla, M. & Pérez-Castrillón, J.-L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: a systematic review and meta-analysis. Nutrients 14, 360 (2022).
Qi, Q. et al. Vitamin D metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 year weight-loss trial: POUNDS Lost. Diabetologia 58, 2791–2799 (2015).
Merino, J. et al. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol. Psychiatry 24, 1920–1932 (2019).
pubmed: 29988085 doi: 10.1038/s41380-018-0079-4
Zhang, X. et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes 61, 3005–3011 (2012).
pubmed: 22891219 pmcid: 3478519 doi: 10.2337/db11-1799
Leach, C. S., Johnson, P. C. & Cintron, N. M. The endocrine system in space flight. Acta Astronautica 17, 161–166 (1988).
Bergouignan, A. et al. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities. NPJ Microgravity 2, 16029 (2016).
pubmed: 28725737 pmcid: 5515527 doi: 10.1038/npjmgrav.2016.29
Heer, M., De Santo, N. G., Cirillo, M. & Drummer, C. Body mass changes, energy, and protein metabolism in space. Am. J. Kidney Dis. 38, 691–695 (2001).
pubmed: 11532708 doi: 10.1053/ajkd.2001.27767
Cope, H. et al. Routine omics collection is a golden opportunity for European human research in space and analog environments. Patterns Prejudice 3, 100550 (2022).
doi: 10.1016/j.patter.2022.100550
Li, X. et al. Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 15, e2001402 (2017).
pubmed: 28081144 pmcid: 5230763 doi: 10.1371/journal.pbio.2001402
Hughson, R. L. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310, H628–H638 (2016).
pubmed: 26747504 doi: 10.1152/ajpheart.00802.2015
Overbey, E. G. et al. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. Cell Rep. Methods 2, 100325 (2022).
Rutter, L. A. et al. Protective alleles and precision healthcare in crewed spaceflight. Nat. Commun. (2024).
Stepanek, J., Blue, R. S. & Parazynski, S. Space medicine in the era of civilian spaceflight. Reply. N. Engl. J. Med. 380, e50 (2019).
pubmed: 31216417 doi: 10.1056/NEJMra1609012
Urquieta, E., Wu, J., Hury, J. & Donoviel, D. Establishment of an open biomedical database for commercial spaceflight. Nat. Med. 28, 611–612 (2022).
pubmed: 35318465 doi: 10.1038/s41591-022-01761-y
Rhee, S. Y., Birnbaum, K. D. & Ehrhardt, D. W. Towards building a Plant Cell Atlas. Trends Plant Sci. 24, 303–310 (2019).
pubmed: 30777643 pmcid: 7449582 doi: 10.1016/j.tplants.2019.01.006
Han, X. et al. Mapping the mouse cell Atlas by microwell-seq. Cell 173, 1307 (2018).
pubmed: 29775597 doi: 10.1016/j.cell.2018.05.012
Regev, A. et al. The Human Cell Atlas. Elife 6, (2017). The project describes the international collaboration to create a Human Cell Atlas that can provide better resolution of cellular dysfunction in human diseases.
Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).
pubmed: 29072289 doi: 10.1038/550451a
Masarapu, Y. et al. Spatially resolved multiomics on the neuronal effects induced by spacefligh. Nat. Commun. https://doi.org/10.1038/s41467-024-48916-8 (2024).
Elmentaite, R., Teichmann, S. A. & Madissoon, E. Studying immune to non-immune cell cross-talk using single-cell technologies. Curr. Opin. Syst. Biol. 18, 87–94 (2019).
pubmed: 32984660 pmcid: 7493433 doi: 10.1016/j.coisb.2019.10.005
Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell–cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26, 12–23. https://doi.org/10.1016/j.coisb.2021.03.007 (2021).
Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).
Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019). The paper introduces the Tissue Chips in Space initiative, which will facilitate the use of “organ-on-chips” and “tissue chips” to study how in-vitro models of human organs and tissues respond to spaceflight.
pubmed: 31848830 pmcid: 8294131 doi: 10.1007/s11095-019-2742-0
Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).
pubmed: 32405060 pmcid: 7220853 doi: 10.1038/s41591-020-0844-1
Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).
pubmed: 28940711 doi: 10.1002/pro.3307
Rutter, L. et al. A new era for space life science: international standards for space omics processing. Patterns 100148. https://doi.org/10.1016/j.patter.2020.100148 (2020).
Committee on Ethics Principles and Guidelines for Health Standards for Long Duration and Exploration Spaceflights, Board on Health Sciences Policy & Institute of Medicine. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework. (National Academies Press, 2014).
Reed, R. D. & Antonsen, E. L. Should NASA Collect Astronauts’ Genetic Information for Occupational Surveillance and Research? AMA J. Ethics 20, E849–E856 (2018).
pubmed: 30242816 doi: 10.1001/amajethics.2018.849
Antonsen, E. L. & Reed, R. D. Policy Considerations for Precision Medicine in Human Spaceflight. Houst. J. Health Law Policy (2019). The paper examines the need for anticipatory considerations of cultural, legal, and ethical issues as the precision healthcare field begins to be applied to spaceflight.
Arnould, J. Icarus’ Second Chance: The Basis and Perspectives of Space Ethics (Springer Science & Business Media, 2011).
Knoppers, B. M. International ethics harmonization and the global alliance for genomics and health. Genome Med. 6, 13 (2014).
pubmed: 25031613 pmcid: 3979077 doi: 10.1186/gm530
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
pubmed: 33242417 pmcid: 7870178 doi: 10.1016/j.cell.2020.11.002
Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).
pubmed: 33976213 pmcid: 8113601 doi: 10.1038/s41467-021-22989-1
Belli, M., Sapora, O. & Tabocchini, M. A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat. Res. 43, S13–S19 (2002).
pubmed: 12793724 doi: 10.1269/jrr.43.S13
Schmidt, M. A., Meydan, C., Schmidt, C. M., Afshinnekoo, E. & Mason, C. E. The NASA twins study: the effect of one year in space on long-chain fatty acid desaturases and elongases. Lifestyle Genom. 13, 107–121 (2020).
pubmed: 32375154 doi: 10.1159/000506769
Lippert, C. et al. Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl Acad. Sci. USA 114, 10166–10171 (2017).
pubmed: 28874526 pmcid: 5617305 doi: 10.1073/pnas.1711125114
Gürsoy, G. et al. Data sanitization to reduce private information leakage from functional genomics. Cell 183, 905–917.e16 (2020).
pubmed: 33186529 pmcid: 7672785 doi: 10.1016/j.cell.2020.09.036
Geyer, P. E., Mann, S. P., Treit, P. V. & Mann, M. Plasma proteomes can be reidentifiable and potentially contain personally sensitive and incidental findings. Mol. Cell. Proteom. 20, 100035 (2021).
doi: 10.1074/mcp.RA120.002359
Bandeira, N., Deutsch, E. W., Kohlbacher, O., Martens, L. & Vizcaíno, J. A. Data management of sensitive human proteomics data: current practices, recommendations, and perspectives for the future. Mol. Cell. Proteom. 20, 100071 (2021).
doi: 10.1016/j.mcpro.2021.100071
Elhaik, E., Ahsanuddin, S., Robinson, J. M., Foster, E. M. & Mason, C. E. The impact of cross-kingdom molecular forensics on genetic privacy. Microbiome 9. https://doi.org/10.1186/s40168-021-01076-z (2021).
Dupras, C. & Bunnik, E. M. Toward a framework for assessing privacy risks in multi-omic research and databases. Am. J. Bioethics 21, 46–64 (2021).
Joly, Y., Dupras, C., Pinkesz, M., Tovino, S. A. & Rothstein, M. A. Looking beyond GINA: policy approaches to address genetic discrimination. Annu. Rev. Genomics Hum. Genet. 21, 491–507 (2020).
pubmed: 31961723 doi: 10.1146/annurev-genom-111119-011436
Mehlman, M. J. & Parasidis, E. Predictive genetic testing by the U.S. military: legal and ethical issues. Mil. Med. 186, 726–732 (2021).
pubmed: 33511993 doi: 10.1093/milmed/usab011
Cortese, F. et al. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 9, 14692–14722 (2018).
pubmed: 29581875 pmcid: 5865701 doi: 10.18632/oncotarget.24461
Nguyen, M. T. et al. Model consent clauses for rare disease research. BMC Med. Ethics 20, 55 (2019). The paper demonstrates how global task forces can work together to improve consent procedures for rare disease research, which may be applicable to space travelers (who are also small in number and may present with conditions not present in the terrestrial population).
pubmed: 31370847 pmcid: 6676617 doi: 10.1186/s12910-019-0390-x
Boyd, J. E. et al. Cultural differences in crewmembers and mission control personnel during two space station programs. Aviat. Space Environ. Med. 80, 532–540 (2009).
pubmed: 19522363
Thorogood, A., Dalpé, G. & Knoppers, B. M. Return of individual genomic research results: are laws and policies keeping step? Eur. J. Hum. Genet. 27, 535–546 (2019).
pubmed: 30622328 pmcid: 6460582 doi: 10.1038/s41431-018-0311-3
World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).
doi: 10.1001/jama.2013.281053
Saulnier, K. M. et al. Benefits and barriers in the design of harmonized access agreements for international data sharing. Sci. Data 6, 297 (2019).
pubmed: 31792275 pmcid: 6889499 doi: 10.1038/s41597-019-0310-4
Kaye, J. et al. Access Governance for Biobanks: The Case of the BioSHaRE-EU Cohorts. Biopreserv. Biobank. 14, 201–206 (2016).
pubmed: 27183185 pmcid: 5939924 doi: 10.1089/bio.2015.0124
Thorogood, A. et al. International Federation of Genomic Medicine Databases using GA4GH standards. Cell Genom. 1, 100032 (2021).
pubmed: 35128509 pmcid: 8813094 doi: 10.1016/j.xgen.2021.100032
Rieke, N. et al. The future of digital health with federated learning. NPJ Digit Med. 3, 119 (2020).
pubmed: 33015372 pmcid: 7490367 doi: 10.1038/s41746-020-00323-1
Casaletto, J. et al. Federated analysis of BRCA1 and BRCA2 variation in a Japanese cohort. Cell Genom. 2, 100109 (2022).
pubmed: 35373174 pmcid: 8975122 doi: 10.1016/j.xgen.2022.100109
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
pubmed: 26978244 pmcid: 4792175 doi: 10.1038/sdata.2016.18
Steinsbekk, K. S., Kåre Myskja, B. & Solberg, B. Broad consent versus dynamic consent in biobank research: is passive participation an ethical problem? Eur. J. Hum. Genet. 21, 897–902 (2013).
pubmed: 23299918 pmcid: 3746258 doi: 10.1038/ejhg.2012.282

Auteurs

Lindsay A Rutter (LA)

Transborder Medical Research Center, University of Tsukuba, 305-8575, Tsukuba, Japan.
Department of Genome Biology, Institute of Medicine, University of Tsukuba, 305-8575, Tsukuba, Japan.
School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.

Henry Cope (H)

School of Medicine, University of Nottingham, Derby, DE22 3DT, UK.

Matthew J MacKay (MJ)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.

Raúl Herranz (R)

Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.

Saswati Das (S)

Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India.

Sergey A Ponomarev (SA)

Department of Immunology and Microbiology, Institute for the Biomedical Problems, Russian Academy of Sciences, 123007, Moscow, Russia.

Sylvain V Costes (SV)

Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.

Amber M Paul (AM)

Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.

Richard Barker (R)

Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Deanne M Taylor (DM)

Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Daniela Bezdan (D)

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany.
NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, 72076, Germany.
yuri GmbH, Meckenbeuren, 88074, Germany.

Nathaniel J Szewczyk (NJ)

School of Medicine, University of Nottingham, Derby, DE22 3DT, UK.
Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.

Masafumi Muratani (M)

Transborder Medical Research Center, University of Tsukuba, 305-8575, Tsukuba, Japan.
Department of Genome Biology, Institute of Medicine, University of Tsukuba, 305-8575, Tsukuba, Japan.

Christopher E Mason (CE)

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA. chm2042@med.cornell.edu.
The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA. chm2042@med.cornell.edu.
The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA. chm2042@med.cornell.edu.
The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA. chm2042@med.cornell.edu.

Stefania Giacomello (S)

SciLifeLab, KTH Royal Institute of Technology, Stockholm, 17165, Sweden. stefania.giacomello@scilifelab.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH