An EEG study on artistic and engineering mindsets in students in creative processes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
22
12
2023
accepted:
28
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
This study aims to take higher-education students as examples to understand and compare artistic and engineering mindsets in creative processes using EEG. Fifteen Master of Fine Arts (MFA) visual arts and fifteen Master of Engineering (MEng) design engineering students were recruited and asked to complete alternative uses tasks wearing an EEG headset. The results revealed that (1) the engineering-mindset students responded to creative ideas faster than artistic-mindset students. (2) Although in creative processes both artistic- and engineering-mindset students showed Theta, Alpha, and Beta wave activity, the active brain areas are slightly different. The active brain areas of artistic-mindset students in creative processes are mainly in the frontal and occipital lobes; while the whole brain (frontal, oriental, temporal, and occipital lobes) was active in creative processes of engineering-mindset students. (3) During the whole creative process, the brain active level of artistic-mindset students was higher than that of engineering-mindset students. The results of this study fills gaps in existing research where only active brain areas and band waves were compared between artistic- and engineering-mindset students in creative processes. For quick thinking in terms of fluency of generating creative ideas, engineering students have an advantage in comparison to those from the visual arts. Also, the study provided more evidence that mindset can affect the active levels of the brain areas. Finally, this study provides educators with more insights on how to stimulate students' creative ability.
Identifiants
pubmed: 38862597
doi: 10.1038/s41598-024-63324-0
pii: 10.1038/s41598-024-63324-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13364Informations de copyright
© 2024. The Author(s).
Références
Childs, P. et al. The creativity diamond—A framework to aid creativity. J. Intell. 10(4), 73 (2022).
pubmed: 36278595
pmcid: 9590016
doi: 10.3390/jintelligence10040073
Yin, Y., Zuo, H. & Childs, P. R. An EEG-based method to decode cognitive factors in creative processes. AI EDAM 37, e12 (2023).
Karwowski, M. & Brzeski, A. Creative mindsets: Prospects and challenges. Creative Self 32, 367–383 (2017).
doi: 10.1016/B978-0-12-809790-8.00021-2
Dweck, C. S. Self-Theories: Their Role in Motivation, Personality, and Development (Psychology Press, 2013).
doi: 10.4324/9781315783048
Puente-Diaz, R. & Cavazos-Arroyo, J. Creative mindsets and their affective and social consequences: A latent class approach. J. Creative Behav. 53(4), 415–426 (2019).
doi: 10.1002/jocb.217
Cropley, D. H. & Kaufman, J. C. The siren song of aesthetics? Domain differences and creativity in engineering and design. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(2), 451–464 (2019).
doi: 10.1177/0954406218778311
Furnham, A., Batey, M., Booth, T. W., Patel, V. & Lozinskaya, D. Individual difference predictors of creativity in art and science students. Think. Skills Creativ. 6(2), 114–121 (2011).
doi: 10.1016/j.tsc.2011.01.006
Ulger, K. Comparing the effects of art education and science education on creative thinking in high school students. Arts Educ. Policy Rev. 120(2), 57–79 (2019).
doi: 10.1080/10632913.2017.1334612
van Broekhoven, K., Cropley, D. & Seegers, P. Differences in creativity across art and STEM students: We are more alike than unalike. Think. Skills Creativ. 38, 100707 (2020).
doi: 10.1016/j.tsc.2020.100707
Kaufman, J. C. & Beghetto, R. A. Beyond big and little: The four c model of creativity. Rev. Gen. Psychol. 13(1), 1–12 (2009).
doi: 10.1037/a0013688
Wright, L. R. Re-Imagining Genre: Comics,* Literature, and Textual Form (The University of Nebraska-Lincoln, 2006).
Lakin, J. M., Wittig, A. H., Davis, E. W. & Davis, V. A. J. E. J. Am I an engineer yet? Perceptions of engineering and identity among first year students. Eur. J. Eng. Educ. 45(2), 214–231 (2020).
doi: 10.1080/03043797.2020.1714549
Smith, H. M. Exploring Students' Internal Motivation for Engineering Creativity: Creative Confidence and the Arts. Queen's University (Canada) (2018).
Cohen, B. R. Science and humanities: Across two cultures and into science studies. Endeavour 25(1), 8–12 (2001).
pubmed: 11314461
doi: 10.1016/S0160-9327(00)01335-1
de Melo-Martín, I. The two cultures: An introduction and assessment. Technol. Soc. 32(1), 5–9 (2010).
doi: 10.1016/j.techsoc.2009.12.002
Williamson, P. K. The creative problem solving skills of arts and science students—The two cultures debate revisited. Think. Skills Creativ. 6(1), 31–43 (2011).
doi: 10.1016/j.tsc.2010.08.001
Hartlet, J. & Greggs, M. A. Divergent thinking in arts and science students. Stud. High. Educ. 22(1), 93–97 (1997).
doi: 10.1080/03075079712331381161
Simonton, D. K. Varieties of (scientific) creativity: A hierarchical model of domain-specific disposition, development, and achievement. Perspect. Psychol. Sci. 4(5), 441–452 (2009).
pubmed: 26162214
doi: 10.1111/j.1745-6924.2009.01152.x
Foster, C., Wigner, A., Lande, M. & Jordan, S. S. Learning from the parallel pathways of makers to broaden pathways to engineering. Int. J. STEM Educ. 5(1), 1–16 (2018).
doi: 10.1186/s40594-017-0098-8
Hudson, D. J. Fitting segmented curves whose join points have to be estimated. J. Am. Stat. Assoc. 61(316), 1097–1129 (1966).
doi: 10.1080/01621459.1966.10482198
Kolb, A. Y. The Kolb learning style inventory-version 3.1 2005 technical specifications. Boston, MA: Hay Resource Direct, 200(72), 166–171 (2005).
Furnham, A. & Crump, J. The sensitive, imaginative, articulate art student and conservative, cool, numerate science student: Individual differences in art and science students. Learn. Individ. Differ. 25, 150–155 (2013).
doi: 10.1016/j.lindif.2013.03.002
Feist, G. J. The influence of personality on artistic and scientific creativity. Handb. Creativ. 14, 273 (1999).
Kaufman, J. C., Pumaccahua, T. T. & Holt, R. E. Personality and creativity in realistic, investigative, artistic, social, and enterprising college majors. Personal. Individ. Differ. 54(8), 913–917 (2013).
doi: 10.1016/j.paid.2013.01.013
Zare, B. Creativity differences between art and engineering students. Paper presented at the International Conference on E-Business, Management and Economics (2011).
Sagone, E., & Caroli, M. E. D. Creativity and thinking styles in arts, sciences, and humanities high school students. Revista INFAD (2012).
Cropley, D. H. & Kaufman, J. C. Measuring functional creativity: Non-expert raters and the creative solution diagnosis scale. J. Creative Behav. 46(2), 119–137 (2012).
doi: 10.1002/jocb.9
Kirton, M. Have adaptors and innovators equal levels of creativity?. Psychol. Rep. 42(3), 695–698 (1978).
doi: 10.2466/pr0.1978.42.3.695
Baer, J. & Kaufman, J. C. Whence creativity? Overlapping and dual aspect skills and traits. Creativ. Across Domains Faces Muse 6, 313–320 (2005).
Kim, H. Is creativity unidimensional or multidimensioal. Anal. Torrance Test Creative Think. 18, 251–259 (2006).
Andreasen, N. C. & Ramchandran, K. Creativity in art and science: Are there two cultures?. Dialog. Clin. Neurosci. 14, 49–54 (2012).
doi: 10.31887/DCNS.2012.14.1/nandreasen
Ahad, M. T., Hartog, T., Alhashim, A. G., Marshall, M. & Siddique, Z. Electroencephalogram experimentation to understand creativity of mechanical engineering students. ASME Open J. Eng. 2, 10 (2023).
doi: 10.1115/1.4056473
Kumaravel, V. P., Buiatti, M., Parise, E. & Farella, E. Adaptable and robust EEG bad channel detection using local outlier factor (LOF). Sensors 22(19), 7314 (2022).
pubmed: 36236413
pmcid: 9571252
doi: 10.3390/s22197314
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M. & Fink, A. The time-course of EEG alpha power changes in creative ideation. Front. Hum. Neurosci. 8, 310 (2014).
pubmed: 24860485
pmcid: 4026701
doi: 10.3389/fnhum.2014.00310
Zarjam, P., Epps, J., & Chen, F. (2011). Spectral EEG featuresfor evaluating cognitive load. Paper presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Blackwood, D. & Muir, W. J. Cognitive brain potentials and their application. Br. J. Psychiatry 157(S9), 96–101 (1990).
doi: 10.1192/S0007125000291897
Luck, S. A. An Introduction to the Event-Related Potential Technique 7–21 (The MIT Press, 2005).
Fink, A. & Benedek, M. EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123 (2014).
pubmed: 23246442
pmcid: 4020761
doi: 10.1016/j.neubiorev.2012.12.002
Niu, W. & Sternberg, R. J. Cultural influences on artistic creativity and its evaluation. Int. J. Psychol. 36(4), 225–241 (2001).
doi: 10.1080/00207590143000036
Heilman, K. M. Possible brain mechanisms of creativity. Arch. Clin. Neuropsychol. 31(4), 285–296 (2016).
pubmed: 27001974
doi: 10.1093/arclin/acw009
Shen, W., Yuan, Y., Liu, C. & Luo, J. The roles of the temporal lobe in creative insight: An integrated review. Think. Reason. 23(4), 321–375 (2017).
doi: 10.1080/13546783.2017.1308885
Rominger, C., Gubler, D. A., Makowski, L. M. & Troche, S. J. More creative ideas are associated with increased right posterior power and frontal-parietal/occipital coupling in the upper alpha band: A within-subjects study. Int. J. Psychophysiol. 181, 95–103 (2022).
pubmed: 36057407
doi: 10.1016/j.ijpsycho.2022.08.012
Zhou, S. et al. Temporal and spatial patterns of neural activity associated with information selection in open-ended creativity. Neuroscience 371, 268–276 (2018).
pubmed: 29247775
doi: 10.1016/j.neuroscience.2017.12.006
Thiebaut de Schotten, M. & Forkel, S. J. J. S. The emergent properties of the connected brain. Science 378(6619), 505–510 (2022).
pubmed: 36378968
doi: 10.1126/science.abq2591
Ovando-Tellez, M. et al. An investigation of the cognitive and neural correlates of semantic memory search related to creative ability. Commun. Biol. 5(1), 604 (2022).
pubmed: 35710948
pmcid: 9203494
doi: 10.1038/s42003-022-03547-x
Stevens, C. E. Jr. & Zabelina, D. L. Creativity comes in waves: An EEG-focused exploration of the creative brain. Curr. Opin. Behav. Sci. 27, 154–162 (2019).
doi: 10.1016/j.cobeha.2019.02.003
Yin, Y., Wang, P. & Childs, P. Understanding creativity process through electroencephalography measurement on creativity-related cognitive factors. Front. Neurosci. 16, 951272 (2022).
pubmed: 36532268
pmcid: 9748076
doi: 10.3389/fnins.2022.951272
Li, Y.-H., Tseng, C.-Y., Tsai, A.C.-H., Huang, A.C.-W. & Lin, W.-L. Different brain wave patterns and cortical control abilities in relation to different creative potentials. Creativ. Res. J. 28(1), 89–98 (2016).
doi: 10.1080/10400419.2016.1125255
Sawyer, R. K. How artists create: An empirical study of MFA painting students. J. Creat. Behav. 52(2), 127–141 (2018).
doi: 10.1002/jocb.136
Fink, A., Grabner, R. H., Benedek, M. & Neubauer, A. C. Divergent thinking training is related to frontal electroencephalogram alpha synchronization. Eur. J. Neurosci. 23(8), 2241–2246 (2006).
pubmed: 16630071
doi: 10.1111/j.1460-9568.2006.04751.x
Benedek, M., Bergner, S., Könen, T., Fink, A. & Neubauer, A. C. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49(12), 3505–3511 (2011).
pubmed: 21925520
pmcid: 3198250
doi: 10.1016/j.neuropsychologia.2011.09.004
Yang, X. et al. Examining creativity through a virtual reality support system. Educ. Technol. Res. Dev. 66, 1231–1254 (2018).
doi: 10.1007/s11423-018-9604-z
Van Eekeren, J. M. M., & Holleman, G. A. Functional connectivity of the default mode network in participants with higher versus lower creativity scores (2023).
Gridley, M. C. Preferred thinking styles of professional fine artists. Creativ. Res. J. 18(2), 247–248 (2006).
doi: 10.1207/s15326934crj1802_11
Kaluzeviciute, G. & Willemsen, J. Scientific thinking styles: The different ways of thinking in psychoanalytic case studies. Int. J. Psychoanal. 101(5), 900–922 (2020).
pubmed: 33952138
doi: 10.1080/00207578.2020.1796491
Eder, W. E. & Hosnedl, S. Introduction to Design Engineering: Systematic Creativity and Management (CRC Press, 2010).
doi: 10.1201/b10536
Jiang, H., & Yen, C.-C. Understanding senior design students’ product conceptual design activities: A comparison between industrial and engineering design students (2010).
Purcell, A. T. & Gero, J. S. Drawings and the design process: A review of protocol studies in design and other disciplines and related research in cognitive psychology. Des. Stud. 19(4), 389–430 (1998).
doi: 10.1016/S0142-694X(98)00015-5
Arden, R., Chavez, R. S., Grazioplene, R. & Jung, R. E. Neuroimaging creativity: A psychometric view. Behav. Brain Res. 214(2), 143–156 (2010).
pubmed: 20488210
doi: 10.1016/j.bbr.2010.05.015
Cortes, R. A., Weinberger, A. B., Daker, R. J. & Green, A. E. Re-examining prominent measures of divergent and convergent creativity. Curr. Opin. Behav. Sci. 27, 90–93 (2019).
doi: 10.1016/j.cobeha.2018.09.017
Ding, K. et al. Recognizing ideas generated in a creative thinking task: Effect of the subjective novelty. Curr. Psychol. 8, 1–13 (2021).
Stevens, C. E. Jr. & Zabelina, D. L. Classifying creativity: Applying machine learning techniques to divergent thinking EEG data. Neuroimage 219, 116990 (2020).
pubmed: 32474083
doi: 10.1016/j.neuroimage.2020.116990
Sawyer, K. The cognitive neuroscience of creativity: A critical review. Creativ. Res. J. 23(2), 137–154 (2011).
doi: 10.1080/10400419.2011.571191
Perchtold-Stefan, C. M. et al. Humor comprehension and creative cognition: Shared and distinct neurocognitive mechanisms as indicated by EEG alpha activity. Neuroimage 213, 116695 (2020).
pubmed: 32142882
doi: 10.1016/j.neuroimage.2020.116695
Dietrich, A. & Kanso, R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 136(5), 822 (2010).
pubmed: 20804237
doi: 10.1037/a0019749